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Preface 

Notwithstanding with the monumental success and strides made by the Newtonian 
mechanics in the first quarter of the twentieth century, it was found to be inadequate 
to explain the plethora of problems wherein either the objects move with exception-
ally very high velocity or the size of the object is extremely small. The problems 
involving objects moving with velocities comparable to the velocity of light are 
best explained in the realm of theory of special relativity propounded by Einstein in 
1905. The fundamental principle of special theory of relativity can be enunciated as, 
“Physical law is independent of the inertial frame of reference; i.e., a physical law 
maintains its structure in all inertial reference frames.” This fundamental assumption 
is often dubbed as covariance of physical law. For instance, we consider the velocity 
of light in vacuum to be a physical law; i.e., the velocity of light remains constant in 
all inertial reference frames. Further, the negative results of Michelson and Morley 
experiment were explained by Lorentz and Fitzgerald. These mathematicians 
changed the notion of space and time considered under Newtonian mechanics and 
thereby compelled Einstein to formulate a new concept of spacetime entity. This 
spacetime is a geometric framework within which we perform physics. Einstein ruled 
out the concept of ether and pronounced that the physical laws are unaffected by the 
motion of the observer. Moreover, the clear distinction between the classical theory 
and Einstein’s theory of relativity lies in the conceptualization that the velocity 
of light in vacuum is unaltered by the velocity of observer or by the velocity of 
source. Further, a classical treatment is ruthlessly inadequate to explain the problems 
involving objects having extremely small sizes. These problems may fall within the 
domain of quantum mechanics, put forward by Schrodinger, Bohr, Heisenberg et al. 
in the early years of the twentieth century. Quantum mechanics describes a broad 
range of problems based on very few postulates. It provides a quantitative prediction 
for many physical situations, and these predictions agree well with the experiments 
thereof. To cut the long story short, quantum mechanics is the ultimate basis today by 
which we understand the physical world around us. A theory that subsumes relativity 
and quantum mechanics is referred as quantum field theory. However, even as of 
today it cannot contend to be a complete satisfactory theory. In the present context, 
we would exclusively work within the domain of electrodynamics. It is pertinent to 
note here that the electrodynamics is a branch of physics in which the force acting
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vi Preface

between two moving charges depends upon the distance between them and their 
velocities. Furthermore, the force is not directed along a straight line between the 
charges. This is the fundamental difference between classical mechanics and elec-
trodynamics. Therefore, the basic concepts of classical mechanics are not applicable 
to electrodynamics. The extension of the principle of relativity to electrodynamics 
results in the development of four fundamental Maxwell’s equations for empty 
space. According to Maxwell, “Electromagnetic waves propagate in vacuum with a 
uniform velocity c = 3 × 108 m/s. Light waves are electromagnetic waves, and the 
velocity of light in vacuum is unaltered by the state of motion of the source of light.” 

The present book has been devised for graduate students and can be covered 
comfortably in one semester. We have tried our best to make complex and intriguing 
concepts and ideas more interesting and accessible. The book is divided into five 
chapters. Every chapter is supplemented with problems besides solved examples 
related to the topics covered. Some of the problems are more challenging, and there-
fore, a reader has to render a lot of effort to solve such problems. However, it is worth-
while that such problems will help the reader to fathom the beauty of the subject. 
Chapter 1 deals with the basic mathematical ideas and concepts. A strong mathe-
matical background is prerequisite to better understand this subject, and therefore, 
the readers are advised to devote a fair amount of time on this chapter. Moreover, the 
readers should also benefit from other standard textbooks on mathematical physics 
so as to get the proper insight into the realm of mathematics. Chapter 2 of the book 
concerns with the boundary value problems. The main focus has been laid on solving 
the Laplace equation under suitable boundary constraints in spherical and cylindrical 
coordinates. The end results are most profound and thought provoking. The readers 
will be benefitted from the present book as most of the derivations have been carried 
out in a diligent manner. The readers are advised to emphasize on the problems of this 
chapter. Chapter 3 illustrates the intricate boundary value problems. The boundary 
value problems based on the method of images have been covered in this chapter. 
This chapter will help the reader to get deep insight into the subject. Chapter 4 deals 
with the advanced topics of electrodynamics. This chapter illustrates the potential 
formulation of electric and magnetic fields. The advanced topics presented here are 
predominantly those involving the interaction of the charged particles with each other 
and with the electromagnetic fields. Chapter 5 is devoted to the study of relativistic 
particle kinematics and dynamics. Once the four-vector concept is properly under-
stood, the reader will be in a better position to employ the Lorentz transformations 
in explaining various phenomena appearing in relativistic electrodynamics. The end 
results of this chapter are very interesting and cannot be found elsewhere in the 
literature. 
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Fundamental Interactions 

According to our current understanding, nature is governed by four fundamental 
interactions: gravitational, weak, electromagnetic and strong. The relative strength 
and range of these interactions vary significantly. However, physicists have embarked 
on a strenuous task to search for the possibility of unification of these fundamental 
interactions and that would serve as a strong tool to develop the concise description of 
the Universe. After persistent development, electromagnetic and weak interactions 
were dubbed as the two facets of the electroweak force. This theory was proposed 
by Glashow, Weinberg and Salam. This discovery was important in formulating the 
Standard Model of particle physics. This model was successfully employed to explain 
a wide variety of problems with the utmost precision. This model provides a coherent 
quantum-mechanical description of electromagnetic, strong and weak interactions 
based on the fundamental constituents of matter, viz. quarks and leptons interacting 
via force carriers’ photons, W± and Z bosons and gluons. However, electroweak 
theory is still considered incomplete as it sans in providing any viable explanation in 
the asymmetry between matter and antimatter. The theory that describes the charac-
teristic features of the strong force is referred as Quantum Chromodynamics (QCD). 
The existence of the disentangled state of matter called Quark Gluon Plasma (QGP) 
was predicted by the QCD. QCD is a gauge theory; i.e., it is based on the fundamental 
postulate that if all colours in a system are simultaneously changed, this does not 
affect the interactions within the system. A principle often referred as gauge invari-
ance or the invariance under gauge transformations. However, systems in QCD are 
even invariant under gauge transformations that depend on positions in space and 
time. This assumption is referred as local gauge invariance, and thus QCD is called 
a local gauge theory. The electromagnetic force is described by the Abelian field 
theory called Quantum Electrodynamics (QED) and is based on symmetry group 
U(1). This implies the existence of the electric charge and one colourless field, the 
photon. However, the symmetry group that describes the strong interactions is the 
non-Abelian group SU(3) that implies the existence of eight massless gluon fields 
(associated with eight Gell-Mann matrices, generators of the SU(3) group) which 
carry the colour charge and are, therefore, auto-interacting.
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Chapter 1 
Mathematical Tools for Electrodynamics 

Abstract This chapter introduces vectors as mathematical objects characterized by 
both magnitude and direction, distinguishing them from scalars. Concepts include 
vector notation, components and operations such as addition, scalar multiplication, 
dot and cross products and triple products, which are pivotal in physics and engi-
neering. Graphical interpretation using arrows allows an understanding of these oper-
ations. Advanced topics cover transformations of vectors under coordinate changes, 
using tools like transformation matrices, Kronecker delta and Levi–Civita symbols. 
The discussion extends to the differential calculus of vectors, exploring gradient, 
divergence, curl and integral formulations (line, surface and volume integrals) crit-
ical for analysing physical fields. Special functions like Legendre polynomials and 
Bessel functions are introduced for problems involving spherical and cylindrical 
symmetries. The chapter concludes with the applications of vector concepts and 
specialized functions in electrodynamics, offering a foundation for analysing spatial 
and directional phenomena. 

Keywords Scalar and vector · Tensor · Del operator · Levi–Civita symbol ·
Kronecker delta · Special functions 

1.1 Significance of Mathematical Tools in Electrodynamics 

Electrodynamics, the branch of physics that deals with the study of electric and 
magnetic fields, is inherently mathematical. This discipline explores how electric 
charges produce and interact with electric and magnetic fields, leading to various 
phenomena such as electromagnetism, electromagnetic induction and radiation. 
A strong mathematical formulation is, therefore, essential for understanding and 
predicting these phenomena.
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1.2 Mathematical Formulation of Electrodynamics 

1.2.1 Maxwell’s Equations 

These are unparalleled equations of electrodynamics. These constitute a set of differ-
ential equations that describe how electric and magnetic fields are generated and are 
altered by the charges and currents. These equations, expressed in differential form, 
are given as: 

1. Gauss’s Law: �∇ · �E = ρ 
ε0 

2. Gauss’s Law for Magnetism: �∇ · �B = 0 
3. Faraday’s Law: �∇ × �E = − ∂ �B 

∂t 

4. Ampere-Maxwell Law: �∇ × �B = μ0�J + μ0ε0 
∂ �E 
∂t 

These equations are inherently mathematical and provide a comprehensive frame-
work for understanding electromagnetic phenomena. To unlock their full predictive 
power, a range of mathematical tools is essential. These tools help physicists analyse 
electromagnetic systems and solve boundary value problems. 

1.2.2 Vector Calculus 

Electromagnetic fields are vector fields. Understanding concepts like divergence, 
gradient and curl are fundamental to vector calculus and are, therefore, essential for 
interpreting and applying Maxwell’s equations. 

1.3 Quantitative Predictions and Analysis 

Mathematical tools enable the precise quantification of electromagnetic phenomena. 
Calculations involving electric field strengths, magnetic flux and electromag-
netic wave propagation require numerical methods and analytical skills. Complex 
phenomena like wave interference, polarization and diffraction can be accurately 
modelled and predicted using mathematical equations. 

1.4 Computational Electrodynamics 

Advancements in computational methods make mathematical tools crucial for simu-
lating electromagnetic fields and waves in complex systems. Techniques like Finite 
Element Analysis (FEA) are extensively used in designing and testing electronic
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devices, antennas and other systems. Computational models rely on numerical solu-
tions to Maxwell’s equations, enabling scientists and engineers to visualize and 
optimize electromagnetic interactions in real-world scenarios. 

1.5 Applications 

Undoubtedly mathematical tools form the bedrock of modern-day science and 
technology. The various applications of such tools can be illustrated as follows. 

1.5.1 Engineering and Technology 

Mathematical tools in electrodynamics are important for designing various tech-
nological applications, from day-to-day gadgets to sophisticated communication 
systems and power grids. Understanding electromagnetic compatibility and inter-
ference, essential for the functioning of electronic devices, relies heavily on 
mathematical analysis. 

1.5.2 Research and Innovation 

Advanced mathematical techniques in electrodynamics pave the way for research in 
areas like photonics, quantum computing and wireless energy transfer. Theoretical 
predictions often lead to new discoveries and technological advancements. Thus, 
in short, we can say that mathematical tools are not just beneficial but essential in 
the field of electrodynamics. They provide the language and framework for under-
standing, predicting and applying the principles of electromagnetism. From theoret-
ical research to practical engineering, the role of mathematics in electrodynamics 
is fundamental and far-reaching, underpinning the technological advancements that 
drive our modern world. 

In the realm of physics, physical quantities are categorized into two distinct 
types: scalar and vector. Scalar quantities are simpler in nature and can be effec-
tively managed using ordinary algebra due to their singular attribute of magnitude. 
Conversely, vector quantities are more complex, possessing both magnitude and 
direction, necessitating the use of a specialized form of algebra tailored for them. 
Our objective is to develop and explore this specialized algebra, specially designed 
for handling vector quantities.
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1.6 Definition and Representation of a Vector 

A vector is a mathematical object possessing both magnitude and direction. It follows 
vector laws that distinguish it from a scalar, which has only magnitude. Vectors are 
used in physics to represent quantities that need both these properties to be fully 
described. 

1.6.1 Notation and Components 

• A vector is often represented by an arrow over a symbol, for instance, �A. It is also  
written as a bold-faced letter A. 

• The size or magnitude of the vector �A is represented by
∣
∣
∣�A
∣
∣
∣ or, simply by A and 

refers to the length or size of the vector. 
• Generally, a vector of unit magnitude drawn in the direction of a given vector 

represents the direction of a given vector. Therefore, for any vector �A, we represent 
a unit vector by Â. 

1.6.2 Vector Representation 

• The vector �A can be expressed as a product of its magnitude and its direction:
�A =

∣
∣
∣�A
∣
∣
∣Â. 

• In a Cartesian coordinate system, vectors can be expressed into components along 
the three coordinate axes. For instance,

�A = Axî + Ayĵ + Az k̂ (1.1) 

where î, ̂j and k̂ are orthogonal unit vectors. 

1.6.3 Negative of a Vector 

• The negative of a vector �A is symbolized as − �A. It has essentially the same 
magnitude as �A; however, it is directed opposite to vector �A. 

• This can be represented as −�A =
∣
∣
∣�A
∣
∣
∣

(− ̂A
)

. Here  −Â signifies a unit vector in the 

direction opposite to Â.
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Fig. 1.1 Negative vector 

1.6.4 Graphical Interpretation 

• Graphically, if you draw a vector �A as an arrow pointing in a certain direction, 
then − �A will be an arrow of the same length pointing in the exactly opposite 
direction, as shown in Fig. 1.1. 

• This concept is fundamental in vector algebra for operations like vector subtrac-
tion, where the negative of a vector is often utilized. 

1.6.5 Addition of Vectors 

Vector addition is a fundamental operation in vector algebra and is distinct from the 
addition of scalar quantities. The process involves combining two or more vectors 
to form a single vector, known as the resultant vector. Let us elaborate on the vector 
addition process using the example of adding vectors �A and �B to form the resultant 
vector �C represented as �A + �B = �C as shown in Fig. 1.2. 

Fig. 1.2 Vector addition
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1.6.6 Graphical Representation 

The method of vector addition is illustrated as follows: 

1. Head-to-Tail Method: 

• To add �A and �B, we first draw vector �A with its tail at the origin and its head 
pointing in its designated direction. 

• Then, translate vector 
−→
B so that its tail is at the head of �B. The translation of 

vector 
−→
B should be such that its magnitude and direction remain unchanged. 

• The resultant vector �C is then drawn from the tail of �A (the starting point) to 
the head of �B (the end point). 

2. Translation of Vectors: 

• In vector addition, it’s important to note that the vectors can be moved (trans-
lated) parallel to themselves in space without changing their effect. This 
property is crucial for vector addition. 

3. Resultant Vector: 

• The resultant vector �C in this case represents the combined effect of vectors
�A and �B. Its magnitude and direction are determined by the combined effect 
of the two original vectors. 

1.6.7 Commutative Nature 

Vector addition always follows the commutative law. 
In Fig. 1.3, vector �A is drawn along OC with its head pointing in a certain direction. 

Vector �B then placed with its tail at the head of �A pointing in its own direction. The 
resultant vector �C is drawn from the tail of �A to the head of �B. 

Here is the illustration of vector addition using the head-to-tail method. In this 
graphical representation:

Fig. 1.3 Graphical 
representation of vector 
addition, illustrating the 
resultant vector obtained by 
combining two vectors using 
the head-to-tail method 
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• Vector 
−→
A is drawn from the origin with its head pointing in a specific direction. 

• Vector �B is then placed with its tail at the head of �A pointing in its own direction. 
• The resultant vector �C is depicted from the tail of �A to the head of �B representing 

the combined effect of vectors �A and �B. 

1.7 Multiplication of Vectors 

Vector multiplication can be performed in different ways depending on whether the 
multiplier is a scalar or another vector. This process is fundamental in physics and 
engineering for various applications. 

1.7.1 Multiplication of Vector by a Scalar 

When a vector quantity is multiplied by a scalar quantity, then the new physical 
quantity obtained is also a vector quantity. The magnitude of this new physical 
quantity is equal to the product of the scalar quantity and the magnitude of the vector 
quantity. However, the direction of the new vector quantity is same as that of the 
vector quantity with which a scalar quantity is multiplied. For example, if �A is a 
vector and 3 is a scalar, then 3 �A = 3

∣
∣
∣�A
∣
∣
∣Â. Here, the magnitude of vector �A is 

multiplied by 3, but its direction remains unchanged. 

1.8 Vector Multiplication 

Vector multiplication is of two types, viz. scalar product and vector product. 

1.8.1 Scalar Product 

It is also called as dot product. 

• The scalar or dot product of two vectors results in a scalar quantity. 
• Representation: �A. �B. 

Geometrical Interpretation: The dot product measures the extent to which two 
vectors align with each other. Mathematically, the dot product of two vectors �A and
�B is defined as the product of their magnitudes multiplied by the cosine of the smaller 
angle between them
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(i) 

(ii) 

Fig. 1.4 Two vectors at θ = 00 and 900. Area  = ab. On the other hand, �A.�B = 0 (at θ = 900)

�A.�B =
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ cos(θ ) (1.2) 

• Commutativity: It follows commutative law, i.e., �A.�B = �B.�A 
• Special Cases: If the angle between the vectors is 0°, then �A.�A = A2. However, if 

the angle between vectors is 90°, then �A.�B = �B.�A = 0 indicating that the vectors 
are perpendicular, hence no projection of one on the other as shown in Fig. 1.4. 

In physics, the dot product is used to calculate work done: W = �F · −→ds , where �F 
is the force vector and 

−→
ds is the displacement vector. 

1.8.2 Law of Cosines 

The dot product concept leads to the law of cosines in geometry, which is useful in 
solving problems involving angles and lengths in a triangle (Fig. 1.5).

To develop a better understanding of dot product, consider the example. 

Example 1.1 Given the vector equation �B + �C = �A. Find �C. �C. 
Solution: 
From the above we can write:

�C = �A − �B (1.3)
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Fig. 1.5 The geometry of 
vector addition

Taking the dot product of this expression with itself, we obtain (Fig. 1.5).

�C · �C =
(�A − �B

)

·
(�A − �B

)

�C · �C = �A ·
(�A − �B

)

− �B ·
(�A − �B

)

�C · �C = �A · �A − �A · �B − �B · �A + �B · �B 
C2 = A2 − 2�A · �B + B2 

C2 = A2 + B2 − 2�A · �B 
C2 = A2 + B2 − 2

∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ cos(θ ) (1.4) 

Similarly, we can prove that 

B2 = A2 + C2 − 2
∣
∣
∣�A
∣
∣
∣

∣
∣
∣ �C
∣
∣
∣ cos(θ ) (1.5) 

Proceeding in the same manner, we can show that 

A2 = B2 + C2 − 2
∣
∣
∣�B
∣
∣
∣

∣
∣
∣ �C
∣
∣
∣ cos(θ ) (1.6) 

Thus, Eqs. (1.4), (1.5) and (1.6) are known as law of cosines. This example 
demonstrates how the dot product is used in vector algebra to solve complex problems 
involving vector magnitudes and angles. 

Example of dot product is work: One of the most important applications of scalar 
or dot product in physics is in the calculation of work, W = �F ·−→ds , which is interpreted 
as displacement times the projection of the force along the direction of displacement 
vector. 

Example 1.2 A force �F = 5î + 2ĵ − k̂N  acts on an object that undergoes a 
displacement �d = 4î − ̂j + 2k̂m. What is the work done by the force? 

Solution: 
Work performed by the force is given by
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W = �F .�d 
W = 16 J 

The concept of dot product naturally leads to the Law of Cosines in geometry, which 
is a fundamental tool in solving problems involving angles and length of sides in a 
triangle. The Law of Cosines is particularly useful in cases where the Pythagoras 
theorem does not apply, such as nonright-angled triangles. This law establishes a 
relationship between the sides of a triangle and the cosine of one of its angles. 

Mathematically, the Law of Cosines states that 

C2 = A2 + B2 − 2
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ cos(θ ) 

Where 

• A and B are the lengths of two sides of the triangle, 
• θ is the angle between these two sides, 
• C is the length of the side opposite to the angle θ. 

Geometric Interpretation 

• The Law of Cosines is a generalization of the Pythagoras theorem. When θ = 
900, cos (900) = 0 and the equation simplifies to the familiar form C2 = A2 + B2 

which is the Pythagoras theorem often encountered in mathematics. However, 

when θ �= 900, the additional term −2
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣cos(θ ) accounts for the influence of 

the angle on the length of the third side. 

Visual Representation 

Figure 1.4: Two vectors at different angles 

• (i) When θ = 00 , the two vectors are aligned in the same direction, maximizing 
their dot product. 

• (ii) When θ = 900 , the dot product is zero because cos(900) = 0, meaning the 
vectors are perpendicular. 

By understanding the relationship between the dot product and the Law of Cosines, 
one can gain deeper insights into both vector algebra and geometric principles, 
making it easier to solve complex problems in various scientific and engineering 
fields. 

1.8.3 Vector Product 

It is also referred as cross product. The vector product of two vectors �A and �B is 
defined as the product of their magnitudes multiplied by the sine of the smaller angle
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Fig. 1.6 Parallelogram 
representation of vector 
addition 

between them. The direction of the resultant vector �C is perpendicular to the plane 
containing vectors �A and �B. Therefore, the vectors �A, �B and �C form a right-handed 
system. For instance, angular momentum and torque are examples of cross product 
(Fig. 1.6). 

The cross product, also known as the vector or outer product, is a binary operation 
on two vectors in three-dimensional space. It results in a vector that is perpendicular 
to both of the original vectors and its magnitude is proportional to the area of the 
parallelogram that the vectors span. 

1.8.4 Definition and Properties 

1. Mathematical Representation: 

• The cross or vector product of two vectors �A and �B is denoted as �A × �B. 
• It is given by �A × �B =

∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ sin(θ )n̂ where θ is the angle between 

vectors �A and �B and n̂ is a unit vector perpendicular to the plane containing �A 
and �B. 

2. Non-commutative Nature 

• The cross product is not commutative:
−→
A × �B = −�B × �A. 

• This property implies that by reversing the order of the vectors in the cross 
product changes the direction of the resultant vector. 

3. Self-cross Product: 

• The cross product of a vector with itself is zero: �A × �A = 0 (No area swept). 
This is because the angle between �A and itself is 0°making sin (0°) = 0. 

4. Distributive Property: 

The cross product follows the distributive law: �A×
(�B + �C

)

= �A× �B+�A× �C.
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1.8.5 Application in Rotational Dynamics 

1. Torque: 

• A primary example of the cross product in physics is torque, denoted as �τ 
• Torque is defined as �τ = �r × �F where �r is the position vector and �F is the 

force applied. 
• The direction of �τ is normal to the plane formed by �r and �F indicating �τ is 

along the axis of rotation. 

2. Work versus Torque: 

• Although the dimensional formulae of work and torque are same, they describe 
different physical concepts. 

• Work is associated with translational motion (i.e., the straight-line movement 
of an object from one position to another). It is concerned with how much force 
has been applied to move an object and how far the object has moved. And 
is a scalar product of force and displacement. In the context of energy, work 
represents the transfer of energy to or from an object via the application of 
force along a displacement. For instance, lifting a weight off the ground does 
work against gravity, increasing the object’s gravitational potential energy. 

• Torque, on the other hand, is related to rotational motion (torque is associated 
with rotational motion—the spinning or turning movement of an object around 
a centre or axis). It describes the twisting effect a force has on an object, deter-
mining how effectively a force causes an object to rotate. Just as force causes 
an object to accelerate linearly, torque causes an object to acquire angular 
acceleration. It is a pivotal concept in understanding rotational dynamics in 
systems ranging from simple mechanical levers to complex machinery and 
motors and is a vector product of the position vector and force. 

1.8.6 Geometric Interpretation 

The cross product can be visualized as the area of the parallelogram formed by the 
two vectors. The direction of the resultant vector (given by the right-hand rule) is 
normal to the plane containing the original vectors. Let us create a diagram to visually 
represent the vector product of two vectors highlighting their geometric relationship 
and the direction of the resultant of vectors �A and �B (Fig. 1.7).

Here is the diagram illustrating the vector product of two vectors �A and �B. In this  
representation:

• Vectors �A and �B are shown forming an angle θ between them. 
• The resultant vector �C = �A × �B is depicted as perpendicular to the plane containing

�A and �B. 
• The parallelogram formed by vectors �A and �B is illustrated to help visualize the 

area aspect of the cross product.
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Fig. 1.7 Cross product in 
vector composition

• The direction of �C is indicated in accordance with the right-hand rule. 
Each vector is clearly labelled, and the angle θ is marked, providing a clear visual 

understanding of the geometric and directional properties of the cross product in 
vector algebra. 

1.8.7 Vector Algebra 

However, the three axes x, y and z are mutually perpendicular to each other and form 
a rectangular coordinate system. Let x̂, ŷ and ẑ represent the unit vectors along x-, y-
and z-axes, respectively. Therefore, we can write (Fig. 1.8): 

x̂.x̂ = ŷ · ŷ = ẑ.ẑ = 1 
x̂.ŷ = ŷ.ẑ = ẑ.x̂ = 0 
x̂ × x̂ = ŷ × ·ŷ = ẑ × ẑ = 0 
x̂ × ŷ = ẑ, ̂y × ẑ = x̂, ̂z × x̂ = ŷ (1.7) 

Fig. 1.8 Components of a 
vector along the three 
coordinate axes
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In the component form, we can represent the vectors as

�A = Ax x̂ + Ay ŷ + Azẑ (1.8)

�B = Bx x̂ + By ŷ + Bzẑ (1.9) 

Adding Eqs. (1.8) and (1.9), we get.

�A + �B = (Ax + Bx)x̂ +
(

Ay + By
)

ŷ + (Az + Bz)ẑ (1.10) 

The above equation can be written in compact notation as follows:

�A + �B = 
3
∑

i=1 

(Ai + Bi)î (1.11) 

Similarly, the dot product of Eqs. (1.8) and (1.9) can be written as follows:

�A · �B = (AxBx) +
(

AyBy
)+ (AzBz) = 

3
∑

i=1 

(Ai.Bi) (1.12) 

In particular,

�A · �A = A2 
x + A2 

y + A2 
z (1.13)

∣
∣
∣�A
∣
∣
∣ =

√

A2 
x + A2 

y + A2 
z (1.14) 

If we require to find Ax, Ay and Az components. These components can be obtained 
as follows: 

It is worthwhile that the dot product of any vector �A with any unit vector is the 
component of �A along that direction. Thus, x̂.�A = Ax; ŷ.�A = Ay and ẑ.�A = Az . 

The vector product of two vectors �A and �B is tedious to calculate by actual multi-
plication method; however, it can be easily evaluated by expanding the following 
determinant

�A × �B =
∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ 
Ax Ay Az 

Bx By Bz

∣
∣
∣
∣
∣
∣

(1.15) 

Example 1.3 Deduce the angle between the face diagonals of unit cube as shown in 
Fig. 1.9.

Solution: The face diagonals of the cube are
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Fig. 1.9 A cube of unit 
dimensions

�A = x̂ + ẑ �B = ŷ + ẑ
�A · �B =

∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ cos(θ ) = (x̂ + ẑ) · (ŷ + ẑ)

�A · �B = ẑ · ẑ = 1
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣ cos(θ ) = 1 (1.16) 

However,

∣
∣
∣�A
∣
∣
∣ = √

1 + 1 = √
2 (1.17) 

Also
∣
∣
∣�B
∣
∣
∣ = √

1 + 1 = √
2 (1.18) 

Substitute Eqs. (1.17) and (1.18) in Eq.  (1.15), we get 

√
2 
√
2 cos(θ ) = 1 

θ = 600
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1.9 Scalar Triple Product 

It is written as �A.
(�B × �C

)

and is dubbed as the scalar triple product between three 

vectors �A, �B and �C. Geometrically, |�A.
(�B × �C

)

| represents the volume of the paral-

lelepiped generated by �A, �B and �C, where
∣
∣
∣

(�B × �C
)∣
∣
∣ is the area of the base and 

|A cos θ | is the altitude (Fig. 1.10).

�B × �C =
∣
∣
∣�B
∣
∣
∣

∣
∣
∣ �C
∣
∣
∣ sin(θ )n̂

�A.
(�B × �C

)

=
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣

∣
∣
∣ �C
∣
∣
∣ sin(θ )n̂.n̂

�A.
(�B × �C

)

=
∣
∣
∣�A
∣
∣
∣

∣
∣
∣�B
∣
∣
∣

∣
∣
∣ �C
∣
∣
∣ sin(θ ) (1.19) 

which represents the volume of the parallelepiped as shown in Fig. 1.10. 

1.9.1 Properties of Scalar Triple Product

�A.
(�B × �C

)

= �B.
(�A × �C

)

= �C.
(�A × �B

)

(1.20)

�A.
( �C × �B

)

= �B.
( �C × �A

)

= �C.
(�B × �A

)

(1.21) 

In the determinant form, we can write scalar triple product as follows:

�A.
(�B × �C

)

=
∣
∣
∣
∣
∣
∣

Ax Ay Az 

Bx By Bz 

Cx Cy Cz

∣
∣
∣
∣
∣
∣

(1.22)

Fig. 1.10 Measurement of 
the volume using scalar 
triple product 
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1.10 Vector Triple Product 

This is written as �A ×
(�B × �C

)

. We can make the observations that
(�B × �C

)

is 

perpendicular to the plane containing the vectors �B and �C. Thus, �A ×
(�B × �C

)

is a 

vector perpendicular to the plane of �A and
(�B × �C

)

. We are particularly interested 

in the fact that �A ×
(�B × �C

)

is perpendicular to
(�B × �C

)

. 

1.10.1 Properties 

The vector triple product is a key operation in vector algebra, particularly in physics 
and engineering. It follows several important properties: 

1. Vector Triple Product Identity: 

This identity expresses the cross product of a cross product in terms of scalar 
and vector products, simplifying many vector calculations in mechanics and 
electromagnetism.

�A ×
(�B × �C

)

= �B
(�A. �C

)

− �C
(�A.�B

)

(1.23) 

2. Alternative Form of the Vector Triple Product: 

This shows an alternative way to rearrange the cross products while main-
taining consistency in vector algebra.

�A ×
(�B × �C

)

= −�C ×
(�A × �B

)

= −�A
(�B. �C

)

+ �B
(�A. �C

)

(1.24) 

3. Scalar Quadruple Product: 

This identity is particularly useful in determining relationships between 
vectors in space and plays a key role in electrodynamics and mechanics.

(�A × �B
)

.
( �C × �D

)

=
(�A. �C

)(�B. �D
)

−
(�A. �D

)(�B. �C
)

(1.25) 

4. Cross Product of a Vector Triple Product: 

This identity extends the triple product to four vectors, often used in advanced 
physics and engineering calculations.

�A ×
(�B ×

( �C × �D
))

= �B
(�A.
( �C × �D

))

−
(�A.�B

)( �C × �D
)

(1.26)
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Example 1.4 Given three vectors �A = 2î+ ĵ−3k̂ , �B = −î− ĵ +4k̂, �C = 3î +2ĵ − ̂k. 
Compute the vector triple product �A ×

(�B × �C
)

. Using the vector triple product 

identity �A ×
(�B × �C

)

=
(�A. �C

)�B −
(�A.�B

) �C. 
Solution: 
First, compute dot products

�A. �C = (2)(3) + (1)(2) + (−3)(−1) = 11

�A.�B = (2)(−1) + (1)(−1) + (−3)(4) = −15 

Now, apply the triple product rule

�A ×
(�B × �C

)

= 11�B + 15 �C 

Substitute the vectors �B and �C 

11�B = −11î − 11ĵ + 44k̂ 
− 15 �C = −45î − 30ĵ + 15k̂ 

Thus, �A ×
(�B × �C

)

= 34î + 19ĵ + 29k̂ . 

Example 1.5 A force �F = 5î + 3ĵ − k̂ is applied to a point located at a position
�r = 2î + ĵ + k̂. The point is moving with a velocity �v = −î + 2ĵ + 3k̂. Find the  

torque �τ on the point using the vector triple product �τ = �r ×
(

�v × �F
)

. 

Solution: 
First, compute �v × �F

�v × �F =
∣
∣
∣
∣
∣
∣

î ĵ k̂ 
−1 2  3  
5 3  −1

∣
∣
∣
∣
∣
∣

= −11î + 14ĵ − 13k̂ 

Now, compute �τ = �r ×
(

�v × �F
)

=
∣
∣
∣
∣
∣
∣

î ĵ k̂ 
2 1 1  

−11 14 −13

∣
∣
∣
∣
∣
∣

= −27î + 15ĵ + 39k̂. 

Thus, the torque is �τ = −27î + 15ĵ + 39k̂.
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1.11 Transformation of Vectors 

Vectors are defined in coordinate system, and if we change coordinate system, the 
vector components will be affected. There is a particular geometrical transformation 
law that governs how the vector components are converted from one frame to another. 
That is why tensors came into play. Tensors are invariant with respect to coordinate 
frame. 

Ax 

A 
= cos(θ ); Ax = A cos(θ ); Ay 

A 
= sin(θ ), Ay = A sin(θ ) (1.27) 

Let us rotate, the coordinate system by an angle φ. 
It is obvious from Fig. 1.11 that θ ′ + φ = θ 

θ ′ = θ − φ 
A′
x = A cos(θ − φ) 

A′
x = A cos(θ ) cos(φ) + A sin(θ ) sin(φ) 

A′
x = Ax cos(φ) + Ay sin(φ) 

Similarly, A′
y = A sin(θ − φ) 

A′
y = A sin(θ ) cos(φ) − A cos(θ ) sin(φ) 

A′
y = Ay cos(φ) − Ax sin(φ) 

Thus, the rotation of coordinate system leads to the formation of new components 
of a vector as follows: 

A′
x = Ax cos(φ) + Ay sin(φ), A′

y = Ay cos(φ) − Ax sin(φ) (1.28) 

The above conclusion can be expressed in matrix notation as follows:

(
A′
x 

A′
y

)

=
(

cos(φ) sin(φ) 
− sin(φ) cos(φ)

)(

Ax 

Ay

)

(1.29)

Fig. 1.11 Rotation of a 
coordinate system 
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However, the transformation law assumes the following form for rotation about 
any arbitrary axis in three dimensions 

⎛ 

⎝ 
A′
x 

A′
y 

A′
z 

⎞ 

⎠ = 

⎛ 

⎝ 
Rxx Rxy Rxz 

Ryx Ryy Ryz 

Rzx Rzy Rzz 

⎞ 

⎠ 

⎛ 

⎝ 
Ax 

Ay 

Az 

⎞ 

⎠ (1.30) 

Or, more compactly, the above result can be expressed as under 

A′
i = 

3
∑

j=1 

RijAj (1.31) 

For any given rotation, we can evaluate the elements of matrix R. Here, we will 
introduce the concept of a tensor. A tensor of rank (or order) zero is called scalar, 
and a tensor of rank one is just a vector. In three-dimensional space a scalar has 
30 = 1 component and a vector has 31 = 3 components; a second rank tensor has 
32 = 9 components; and in general, a tensor of rank n has 3ncomponents. Moreover, 
a second rank tensor transforms with two factors of R as follows: 

T ′
xx = Rxx

(

RxxTxx + RxyTxy + RxzTxz
)+ Rxy

(

RxxTyx + RxyTyy + RxzTyz
)

+ Rxz
(

RxxTzx + RxyTzy + RxzTzz
)

In compact notation, the above result will be written as under 

T ′
ij = 

3
∑

k=1 

3
∑

l=1 

RikRjlTkl (1.32) 

Scalar: A rank zero tensor is called a scalar. The various examples are temperature, 
mass and speed. 

Vector: A rank 1 tensor is called a vector. For instance, force, momentum, 
acceleration, weight, torque and angular momentum. Let us consider a vector as 
follows:

�a = ax x̂ + ay ŷ + azẑ 

Or, in particular

�a = ax ê1 + ay ê2 + az ê2 

In compact form, we can write



1.11 Transformation of Vectors 21

�a = 
3
∑

i=1 

ai êi (1.33) 

Example 1.6 A vector �A = 3î+4ĵ is rotated counterclockwise by 450 in the xy-plane. 
Find the components of the new vector after rotation. 

Solution: 
To rotate a vector by an angle θ in 2D, we use the rotation matrix

(
A′
x 

A′
y

)

=
(

cos θ sin θ 
− sin θ cos θ

)(

Ax 

Ay

)

Here, θ = 450, Ax = 3 and Ay = 4. Thus, the rotation matrix becomes

(
A′
x 

A′
y

)

=
(

1 √
2 

1 √
2 

− 1 √
2 

1 √
2

)(

3 
4

)

Now, calculate the new components 

A′
x = 4.94 

A′
y = 0.70 

Thus, the new components are �A′ = 4.94î + 0.70ĵ. 

Example 1.7 A vector �B = 2î + ̂j + k̂ is rotated by 900 about the z-axis. Find the 
new components of the vector after the transformation? 

Solution: 

Rz
(

900
) = 

⎛ 

⎝ 
cos 900 − sin 900 0 
sin 900 cos 900 0 

0 0 1  

⎞ 

⎠ = 

⎛ 

⎝ 
0 −1 0  
1 0 0  
0 0 1  

⎞ 

⎠ 

Now, apply the transformation matrix to �B′

⎛ 

⎝ 
B′
x 

B′
y 

B′
z 

⎞ 

⎠ = 

⎛ 

⎝ 
0 −1 0  
1 0 0  
0 0 1  

⎞ 

⎠ 

⎛ 

⎝ 
2 
1 
1 

⎞ 

⎠ 

Hence, B′
x = −1, B′

y = 2 and B′
z = 1

�B′ = −î + 2ĵ + k̂
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1.12 Kronecker Delta
(
δij

)

An isotropic tensor of second rank is called a Kronecker delta. It has, therefore, 
32 = 9 components. The one-dimensional Kronecker delta δij is defined as 

δij =
{

0, if i �= j 
1, if i = j 

(1.34) 

and 

δi =
{

0, if i �= 0 
1, if i = 0 

(1.35) 

It implies that δ11 = δ22 = δ33 = 1; δ12 = δ21 = δ13 = δ31 = δ23 = δ32 = 0; 
indicating that δij is symmetrical in nature

(

δij = δji
)

, and δijδjk = δik . Now, if  j runs 
from 1 to n, then 

n
∑

j=1 

δjj = δ11 + δ22 + δ33 +  · · ·  δnn = n (1.36) 

In three-dimensional space (n = 3), we get: 
3∑

j=1 
δjj = 3. 

1.13 Scalar Product/Inner Product 

As discussed in the previous sections the scalar product of two vectors �a and �b is a 
scalar and is, therefore, defined as follows:

�a = ax x̂ + ay ŷ + azẑ = ai êi (1.37)

�b = bx x̂ + by ŷ + bzẑ = bj êj (1.38)

�a · �b = ai êi · bj êj = aibj êi · êj (1.39) 

Since, êi.êj = δij, therefore, we obtain from the above equation

�a.�b = aibjδij (1.40) 

For i = j, we have
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�a.�b = aibi (1.41)

�a.�b = a1b1 + a2b2 + a3b3 (1.42) 

1.14 Levi–Civita Symbol 

It is convenient to introduce the three-dimensional Levi–Civita symbol εijk which 
is antisymmetric with respect to all index pairs. It is a third-rank pseudotensor, 
meaning it behaves as a tensor under proper rotations but changes sign under improper 
transformations (such as reflections). 

The number of components is given by: 

33 = 27 

The Levi-Civita symbol is defined as:

εijk = 

⎧ 
⎨ 

⎩ 

+1 for cyclic permutations of (1, 2, 3) 
0 if any two indices are equal 
−1 acyclic (inverse) permutations of (1, 3, 2) 

(1.43) 

Out of the 27 components: 

• 3 components are +1

ε123 = ε231 = ε312 = +1 

• 3 components are -1

ε321 = ε213 = ε132 = −1 

• The remaining 21 components are 0, as they involve repeated indices. 

1.15 Relation Between εijk with δij 

We can find other isotropic tensors from direct products of the two we have or from 
direct products followed by contraction. It is pertinent to mention here that the direct 
product of two tensors of ranks n and m is a tensor of rank n + m and that each 
contraction produces another tensor of rank smaller by 2. If the tensors you multiply
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are isotropic, the products are also isotropic. By simplifying the products of two 
Levi–Civita tensors, we can develop a relationship between a Levi–Civita tensor and 
a Kronecker delta.

εijkεlmn =
∣
∣
∣
∣
∣
∣

δil δim δin 

δjl δjm δjn 

δkl δkm δkn

∣
∣
∣
∣
∣
∣

(1.44) 

On expanding the determinant, we get

εijkεlmn = δil
(

δjmδkn − δjnδkm
)− δim

(

δjlδkn − δjnδkl
)+ δin

(

δjlδkm − δjmδkl
)

Here summation runs from 1 to 3.

εijkεlmn = δilδjmδkn − δilδjnδkm − δimδjlδkn + δimδjnδkl + δinδjlδkm − δinδjmδkl (1.45) 

In this, we put l = i, and hence the above equation is simplified as follows:

εijkεimn = 3δjmδkn − 3δjnδkm − δjmδkn + δkmδjn + δjnδkm − δknδjm (1.46) 

Remember that є is zero, unless its three indices are all different. Since the first 
index is same in εijk and εlmn, the product is different from zero only if the other two 
indices ( j, k and m, n) are the same pair in both the epsilons. Thus, Eq. (1.46) attains 
the following from

εijkεimn = δjmδkn − δjnδkm (1.47) 

Both sides of Eq. (1.47) are 4th-rank tensors (contracted 6th−rank tensor on the 
left) with free indices j, k, m and n. Next, we can see if four indices are same, i.e., if 
j = m. We get from Eq. (1.46)

εimkεimn = δmmδkn − δmnδkm
εimkεimn = 3δkn − δkn
εimkεimn = 2δkn (1.48) 

Further, if all the six indices are same, i.e., if k = n

εimkεimk = 6 (1.49) 

The familiar formulae in vector analysis can be interpreted in tensor form on using 
δij and εijk . 

These results show that familiar vector identities can be expressed concisely using 
the Kronecker delta and the Levi-Civita symbol in tensor notation.
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1.16 Vector Product in Tensor Form 

The cross product of two vectors �a × �b in three-dimensional space can be expressed 
using the Levi-Civita symbol εijk . This formulation provides a tensorial repre-
sentation of the cross product. Using the determinant definition of the cross 
product: 

The components of the cross product of two vectors can be written as

�a × �b =
∣
∣
∣
∣
∣
∣

ê1 ê2 ê3 
ax ay az 
bx by bz

∣
∣
∣
∣
∣
∣

�a × �b = ê1
(

aybz − azby
)− ê2(axbz − azbx) + ê3

(

axby − aybx
)

This result shows that each component of the cross product is a linear combination 
of the components of �a and �b, with alternating signs. From tensor notation, the ith 

component of the cross product can be written using the Levi-Civita symbol.

(

�a × �b
)

i 
= êiεijkajbk

(

�a × �b
)

i 
= ê1(ε123a2b3 + ε132a3b2)

(

�a × �b
)

i 
= ê1(a2b3 − a3b2) (1.50) 

Or,

(

�a × �b
)

i 
= ê1

(

aybz − azby
)

Similarly, we can write

(

�a × �b
)

j 
= êjεjkiakbi

(

�a × �b
)

j 
= ê2(ε231a3b1 + ε213a1b3)

(

�a × �b
)

j 
= ê2(a3b1 − a1b3)

(

�a × �b
)

j 
= −ê2(axbz − azbx) (1.51) 

Proceeding in the same manner, we can, therefore, write

(

�a × �b
)

k 
= êkεkijaibj = −ê3

(

axby − aybx
)

(1.52)
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From the above discussion it is evident that we can express the components of a 
vector product of two vectors in a simplified form while using the concept of tensors. 

1.17 Scalar Triple Product Using Tensors 

The scalar product of three vectors is a scalar quantity. We can evaluate it as follows: 
The scalar triple product of three vectors �a, �b and �c is defined as:

�a.(�b×�c) 

which results in a scalar quantity. This product has significant geometric and algebraic 
interpretations, making it a fundamental concept in vector and tensor analysis. Using 
the Einstein summation convention, the scalar triple product can be expressed as:

�a.(�b×�c) = �ai.(�b×�c)i 
Expanding the cross product in index notation using the Levi-Civita symbol εijk

�a.(�b×�c) = aiεijkbjck 

Rearranging the indices, we obtain:

�a.(�b×�c) = εijkaibjck 

By renaming the dummy indices (which does not change the summation result), we 
can rewrite:

�a ·
(�b × �c

)

= ai ·
(�b × �c

)

i

�a ·
(�b × �c

)

= aiεijkbjck

�a ·
(�b × �c

)

= εijkaibjck

�a ·
(�b × �c

)

= εkijaibjck

�a ·
(�b × �c

)

= ckεkijaibj

�a ·
(�b × �c

)

= ck
(

�a × �b
)

k

�a ·
(�b × �c

)

= �c ·
(

�a × �b
)

(1.53) 

Proceeding in the same manner, we can show that
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εijkaibjck = bjεjkickai = bj(�c × �a)j = �b · (�c × �a) (1.54) 

Hence, we conclude from the above discussion that

�a ·
(�b × �c

)

= �c ·
(

�a × �b
)

= �b · (�c × �a) (1.55) 

1.18 Vectors Triple Product Using Tensors 

We can make use of formulae developed in the preceding sections so as to simplify 
the vector triple product as under

�a ×
(�b × �c

)

= �b(�a · �c) − �c
(

�a · �b
)

�a ×
(�b × �c

)

=
(

�a ×
(�b × �c

))

i 
= εijkaj

(�b × �c
)

k 

= εijkajεklmblcm 
= εijkεklmajblcm 

Since we know that if two indices of Levi–Civita tensors are same, it can be 
manifested with regard to Kronecker delta as follows:

(

�a ×
(�b × �c

))

i 
= (

δilδjm − δimδjl
)

ajblcm 

= δilδjmajblcm − δimδjlajblcm 

= (δilbl)
(

δjmajcm
)− (δimcm)

(

δjlajbl
)

If, we put, i = l, j = m, and j = l and m = i respectively in the first and second 
terms on the RHS of above expression,

(

�a ×
(�b × �c

))

i 
= (δiibi)

(

δjjajcj
)− (δiici)

(

δjjajbj
)

As we consider only one component δii = δjj = 1
(

�a ×
(�b × �c

))

i 
= (bi)

(

ajcj
)− (ci)

(

ajbj
)

Hence
(

�a ×
(�b × �c

))

i 
=
(�b(�a.�c) − �c

(

�a.�b
))

i 
(1.56)
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1.19 The Del Operator 

It is to be noted that we recognize �∇ as if it is vector. Here, we can similarly treat it 
as a first rank tensor, always remembering that it is also a differential operator. We 

can, therefore, establish the following formula for curl of
( �V × �W

)

by making use 

of tensors

�∇ ×
( �V × �W

)

=
( �W · �∇

) �V +
( �∇ · �W

) �V −
( �∇ · �V

) �W −
( �V · �∇

) �W 

We know that the vector triple product in tensor form is written as follows:

( �∇ ×
( �V × �W

))

i 
= εijk �∇jεklmVlWm

( �∇ ×
( �V × �W

))

i 
= εijkεklm �∇j(VlWm)

( �∇ ×
( �V × �W

))

i 
= εijkεklm

[( �∇jVl

)

Wm + Vl

( �∇jWm

)]

= (

δilδjm − δimδjl
)[( �∇jVl

)

Wm + Vl

( �∇jWm

)]

( �∇ ×
( �V × �W

))

i 
= δilδjm

( �∇jVl

)

Wm 

− δlmδjl

( �∇jVl

)

Wm + δilδjmVl

( �∇jWm

)

− δimδjlVl

( �∇jWm

)

Let in the above expression i = l, j = m (in first term), i = m, j = 
l (in 2nd term), i = l, j = m (in 3rd term), i = m, j = l (in 4th term).

( �∇ ×
( �V × �W

))

i 
=
( �∇mVi

)

Wm −
( �∇jVj

)

Wi + Vi

( �∇mWm

)

− Vj

( �∇jWi

)

( �∇ ×
( �V × �W

))

i 
= Wm

( �∇mVi

)

−
( �∇jVj

)

Wi + Vi

( �∇mWm

)

−
(

Vj �∇j

)

Wi 

Hence, we can write

�∇ ×
( �V × �W

)

=
( �W · �∇

) �V +
( �∇ · �W

) �V −
( �∇ · �V

) �W −
( �V · �∇

) �W (1.57) 

Example 1.8 Simplify the expression εijkεlmn using Kronecker deltas and show that

εijkεlmn = δil
(

δjmδkn − δjnδkm
)− δim

(

δjlδkn − δjnδkl
)+ δin

(

δjlδkm − δjmδkl
)

Solution: 
The product of two Levi–Civita symbols can be expressed as a determinant 

involving Kronecker deltas, as stated in the problem. The general form is:
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εijkεεlmn =
∣
∣
∣
∣
∣
∣

δil δim δin 

δjl δjm δjn 

δkl δkm δkn

∣
∣
∣
∣
∣
∣

On expansion of the determinant, we have

εijkεlmn = δil
(

δjmδkn − δjnδkm
)− δim

(

δjlδkn − δjnδkl
)+ δin

(

δjlδkm − δjmδkl
)

(1.58) 

This equation represents the product of two Levi–Civita tensors expressed as a 
combination of Kronecker deltas as required. 

Example 1.9 Use the result εijkεimn = δjmδkn − δjnδkm to calculate the contracted 
tensor εimkεimn. 

Solution: 
Since we know that

εijkεimn = δjmδkn − δjnδkm 

Setting j = m, the above expression becomes

εimkεimn = δmmδkn − δmnδkm 

First, compute δmm which is the summation over the repeated index m 

δmm = 3 

Thus, the equation becomes

εimkεimn = 3δkn − δmnδkm (1.59) 

Example 1.10 Use the result εijkεimn = δjmδkn − δjnδkm to calculate εimkεimk (i.e., 
when all the six indices are same). 

Solution: 
Using the same equation

εimkεimk = δmmδkk − δmk δmk 

Since in three dimensions (n = 3) δmm = 3, δkk = 3 and δmk δmk = 3

εimkεimk = 6 (1.60) 

This is a familiar result in vector analysis, where the fully contracted Levi–Civita 
tensor gives 6, which is the number of independent non-zero components of the 
Levi–Civita symbol in 3D three dimensions.
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Example 1.11 Given three vectors �a, �b and �c, verify that the scalar triple product
�a ·
(�b × �c

)

can be expressed using the Levi–Civita symbol as �a ·
(�b × �c

)

= εijkaibjck . 

Solution: 
We can write the scalar triple product as follows:

�a ·
(�b × �c

)

= ai(b × c)i 

Using the definition of the cross product in index notation: 

(b × c)i = εijkbjck 

Substitute this into the expression for the scalar triple product

�a ·
(�b × �c

)

= aiεijkbjck 

Or

�a ·
(�b × �c

)

= εijkaibjck (1.61) 

Thus, we have verified that the scalar triple product can be expressed in terms of the 
Levi-Civita symbol. 

1.20 Differential Calculus 

Let f (x) be any function. The change in the function with respect to the change in its 
domain or variable x is called derivative of a function. Physically, the derivative is 
interpreted as the slope of a function at any arbitrary point in its domain (Fig. 1.12).


f (x)


x 
= 

f (x2) − f (x1) 
x2 − x1

If we apply the limit on both sides, we get 

lim

x→0


f (x)


x 
= lim


x→0 

f (x2) − f (x1) 
x2 − x1 

df 

dx 
= lim


x→0 

f (x2) − f (x1) 
x2 − x1 

(1.62) 

This is called as derivative or slope or rise over run of a function. df dx is called 

as spatial derivative; on the other hand, df dt is called as time derivative or temporal 
derivative.
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Fig. 1.12 Graphical representation of differentiation of a function

df =
(
df 

dx

)

dx (1.63) 

1.21 The Gradient 

In order to provide more motivation for the vector nature of partial derivatives, we 
will introduce the total variation of a function. Let us assume that T be a function that 
depends on the spatial coordinates x, y and z. Therefore, its total variation is given 
by 

dT =
(

∂T 

∂x

)

dx +
(

∂T 

∂y

)

dy +
(

∂T 

∂z

)

dz 

dT =
((

∂T 

∂x

)

x̂ +
(

∂T 

∂y

)

ŷ +
(

∂T 

∂z

)

ẑ

)

· (dxx̂ + dyŷ + dzẑ) 

Only the inner components multiply that is why dot product is also called as inner 
product. 

dT =
((

∂ 
∂x

)

x̂ +
(

∂ 
∂y

)

ŷ +
(

∂ 
∂z

)

ẑ

)

T · (dxx̂ + dyŷ + dzẑ) 

The first term, i.e.,
((

∂ 
∂x

)

x̂ +
(

∂ 
∂y

)

ŷ + (
∂ 
∂z

)

ẑ
)

, is defined as spatial derivative 
called del operator or nabla, represented by �∇. It is pertinent to mention here that the 
del operator is meaningless unless it is operated upon some function. Furthermore, 
it is not a vector in usual sense. 

dT = �∇T · d�l (1.64)
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dT =
∣
∣
∣ �∇T

∣
∣
∣

∣
∣
∣d�l
∣
∣
∣ cos(θ ) (1.65)

�∇T represents the spatial derivative of a scalar function T in a specific direction, 
or it gives slope of a function in a particular direction. It is a vector quantity having 
three components. 

Consider heater the room at corner of a room. There is a particular direction along 
which there occurs a maximum change. The maximum change in T evidentially 
occurs in the same direction as that of �∇T . Therefore, the gradient �∇T points in the 
direction of maximum increase of the function T. Moreover, | �∇T | gives the slope 
along this maximal direction. 

Example 1.12 Given the field φ(x, y, z) = x2 + y2 + z2. Calculate the �∇φ. 
Solution:

�∇φ =
(

∂φ 
∂x

)

î +
(

∂φ 
∂y

)

ĵ +
(

∂φ 
∂z

)

k̂

�∇φ = 2xî + 2yĵ + 2z k̂ 

Example 1.13 Deduce the gradient of r = √

x2 + y2 + z2. 
Solution: 
Since we are given that (Fig. 1.13). 

r = 
√

x2 + y2 + z2

�∇r = �∇
(√

x2 + y2 + z2
)

�∇r =
(

∂r 

∂x

)

x̂ +
(

∂r 

∂y

)

ŷ +
(

∂r 

∂z

)

ẑ

�∇r = 
1 

2 

2x 
√

x2 + y2 + z2 
x̂ + 

1 

2 

2y 
√

x2 + y2 + z2 
ŷ 

+ 
1 

2 

2z 
√

x2 + y2 + z2 
ẑ

�∇r = 
xx̂ + yŷ + zẑ 
√

x2 + y2 + z2 
= �r 

r 
= r̂ (1.66)

Physically it can be interpreted as the distance from the origin increases abruptly 
in the radial direction and its rate of increase in that direction is unity.
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Fig. 1.13 Gradient of radial 
distance in Cartesian 
coordinates

1.22 The Divergence 

It gives the spread of a vector quantity. The divergence of a vector quantity is a scalar. 
Consider the vector function

�V = Vx x̂ + Vy ŷ + Vzẑ (1.67) 

The divergence of above vector function is defined as follows:

�∇. �V =
((

∂ 
∂x

)

x̂ +
(

∂ 
∂y

)

ŷ +
(

∂ 
∂z

)

ẑ

)

.
(

Vx x̂ + Vy ŷ + Vzẑ
)

As we know in dot product, only internal components multiply.

�∇. �V =
(

∂Vx 

∂x

)

+
(

∂Vy 

∂y

)

+
(

∂Vz 

∂z

)

(1.68) 

We will now investigate the meaning and use of divergence in physical applica-
tions. Consider a region in which water is flowing. We can imagine by drawing at 
every point a vector �V equal to the velocity of the water at that point. The vector 
function �V then represents a vector field. The curves tangent to �V are called stream-
lines. We could in the same way discuss the flow of a gas, of heat, of electricity, or 
of particles (say from a radioactive source). We can show that if �V represents the 
velocity of flow of any of these things, then div �V is related to the amount of the 
substance which flows out of a given volume. This could be different from zero either 
because of a change in density (more air flows out than in as a room is heated) or
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Fig. 1.14 Divergence of a 
vector field 

Fig. 1.15 Zero divergence 
in a uniform field 

because there is a source or sink in the volume (alpha particles flow out of but not 
into a box containing an alpha-radioactive source). Exactly the same mathematics 
applies to the electric and magnetic fields where �V is replaced by �E or �B and the 
quantity corresponding to outflow of a material substance is called flux (Figs. 1.14 
and 1.15). 

Figure 1.14 illustrates a diverging vector field, where vectors radiate outward from 
a central point. This represents a source, such as water flowing out of a faucet or air 
escaping from a balloon. The divergence at these points is positive since the fluid 
expands outward. 

For example, in the case of an expanding gas, if more gas molecules leave a given 
volume than enter, the divergence is positive, indicating net outflow. Mathematically, 
this corresponds to:

�∇. �V > 0 

This also applies to electric fields, where a positive divergence of �E corresponds 
to the presence of a positive charge, which acts as a source of the field. 

Figure 1.15 likely depicts a converging vector field, where vectors point inward 
toward a central point. This represents a sink, such as water being drained into a hole 
or air being sucked into a vacuum pump. The divergence at these points is negative, 
indicating net inflow of the substance.
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For example, if a room is being cooled and air molecules are removed, then
�∇. �V < 0 representing net inflow. Similarly, in an electric field, a negative divergence 
of �E corresponds to the presence of a negative charge, which acts as a sink of the 
field. 

Example 1.14 Given a temperature distribution in space T (x, y, z) = x2+4y2+9z2, 
find the gradient �∇T and interpret its physical meaning. 

Solution: 
The gradient operator of the temperature is written as follows:

�∇T =
(

∂T 

∂x

)

î +
(

∂T 

∂y

)

ĵ +
(

∂T 

∂z

)

k̂ (1.69) 

In the present case, we have �∇T = 2xî + 8yĵ + 18z k̂. 
Physical Interpretation: 

• The gradient �∇T points in the direction of the maximum rate of increase of 
temperature in space. 

• The magnitude of the gradient represents how fast the temperature is increasing 
in that direction. 

• At any point, the vector �∇T gives both the direction and the magnitude of the 
greatest rate of change in temperature. 

Example 1.15 Find the rate of change of the scalar field φ(x, y, z) = 2x2 + y2 − z2 
at the point (1, −1, 2) along the direction of the vector �v = î − 2ĵ + 2k̂. 

Solution: 
The directional derivative of a scalar field φ in the direction of a vector �v is 

illustrated as under

�∇φ.v̂

�∇φ = 4xî + 2yĵ − 2z k̂ 

At the point (1, − 1, 2), the gradient becomes:

�∇φ = 4î − 2ĵ − 4k̂ 

The magnitude of vector �v is |�v| = 3. The unit vector v̂ is given by 

v̂ = 
1 

3

(

î − 2ĵ + 2k̂
)

Therefore, the directional derivative is given by

�∇φ.v̂ = 0
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Example 1.16 If �Va = xx̂ + yŷ + zẑ; �Vb = ẑ; �Vc = zẑ. Evaluate the divergence in 
each case 

Solution: �∇. �Va =
(

∂x 
∂x

)+
(

∂y 
∂y

)

+ (
∂z 
∂z

) = 3. 
As expected, this function possesses positive divergence

�∇ · �Vb = 0 

Exactly, it was anticipated

�∇ · �Vc = 1

�∇ · �Vb = 0 

It means inward flux is equal to outward flux.

�∇ · �Vc = 1 

These results have far-reaching consequences in electrodynamics. In electrody-
namics, we have to deal with electric and magnetic fields. We are mainly concerned 
to evaluate the divergence of these fields in electrodynamics. Hence, these results 
could serve as a cornerstone for electrodynamics. 

1.23 The Curl 

The curl of any vector function �V is constructed as follows:

�∇ × �V =

∣
∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ 
∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

Vx Vy Vz

∣
∣
∣
∣
∣
∣
∣

�∇ × �V = x̂
(

∂Vz 

∂y 
− 

∂Vy 

∂z

)

− ŷ
(

∂Vz 

∂x 
− 

∂Vx 

∂z

)

+ ẑ
(

∂Vy 

∂x 
− 

∂Vx 

∂y

)

(1.70) 

It is worthwhile to note that the curl of any vector function produces a vector. 
Geometrically, it measures how much a vector function curls around a particular 
point. 

Example 1.17 Let �Va = −yx̂ + xŷ be the function sketched in Fig. 1.16. Calculate 
its curl

Solution: 
Since �Va = −yx̂ + xŷ is the given vector function
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Fig. 1.16 Representation of 
curl in a vector field

�∇ × �Va = 2ẑ 

This indicates that the function under consideration has a substantial curl that 
points in the z-direction. 

Example 1.18 Let �Vb = xŷ be the function sketched in Fig. 1.17. Calculate its curl. 
Solution: Since the given function is �Vb = xŷ

�∇ × �Vb = ẑ 

From the above result, it is evident that the function under consideration has some 
substantial curl which points in the z-direction.

Fig. 1.17 Vector field 
representation with curl 
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1.24 Second-Order Derivatives 

The gradient, the divergence and the curl are the only first derivatives. Further, if we 
operate �∇ twice, we can, therefore, construct five species of second derivatives as 
follows. 

1. Divergence of gradient: �∇.( �∇T ), This is just Laplacian of T and is, therefore, 
a scalar quantity. 

2. Curl of gradient: �∇ ×
( �∇T

)

, The curl of gradient is always zero, i.e., �∇ ×
( �∇T

)

= 0. However, �∇ being an operator and it does not multiply in the usual 

sense. Its proof hinges on the notion of the equality of cross derivatives. 
3. Gradient of divergence: �∇( �∇. �V ), This quantity is different from Laplacian and 

often occurs in physical application. 
4. Divergence of curl: �∇. ( �∇ × �V ), The divergence of curl is also zero, i.e.,

�∇.
( �∇ × �V

)

= 0 
5. Curl of curl: �∇ ×  ( �∇ × �V ), The curl of curl gives nothing new.

�∇.
( �∇T

)

�= 0

�∇ ×
( �∇T

)

= 0

�∇
( �∇. �V

)

�= 0

�∇.
( �∇ × �V

)

= 0

�∇ ×
( �∇ × �V

)

�= 0 

From the above discussion, it is evident that there are just two second-order 
derivatives, viz. Laplacian and gradient of divergence. The Laplacian is of prime 
importance, and the gradient of divergence is seldom encountered in phys-
ical problems. However, we could also work out third-order derivatives but for 
practical purposes only second-order derivatives suffice. 

Example 1.19 Given the vector fields �V = xî + yĵ + z k̂ and �W = −yî + xĵ + 2z k̂. 
Calculate �∇ ×

( �V × �W
)

. 

Solution: 
We know that

�∇ ×
( �V × �W

)

=
( �W · �∇

) �V +
( �∇ · �W

) �V −
( �∇ · �V

) �W −
(�V · �∇

) �W
( �W · �∇

) �V = −yî + xĵ + 2z k̂,
( �∇ · �W

) �V = 2xî + 2yĵ + 2z k̂,
( �∇ · �V

) �W = −3yî + 3xĵ + 6z k̂ and
(�V · �∇

) �W = −yî + xĵ + 2z k̂



1.25 Integral Calculus 39

Hence

�∇ ×
( �V × �W

)

= (2x + 3y)î + (2y − 3x)ĵ − 4z k̂ 

1.25 Integral Calculus 

The integrals which we often encounter in electrodynamics are line (or path) integrals, 
surface (or flux) integrals and volume integrals. 

1.25.1 Line Integrals 

It can be represented as
∫ b 
a

�V · d�l, where �V being some vector function and d�l is an 
infinitesimal displacement vector. However, if the path under consideration forms a 
closed loop, then we mark a circle sign on the integral, i.e.,

∮ �V · d�l. The quantity
�V · d�l represents area under the curve. For instance, work performed by a constant 
force; i.e., W = ∫ b 

a
�F · d�l, is the most familiar example of the line integral that we 

often come across in physics (Fig. 1.18). 
The value of the line or path integral is entirely dependent on the particular path 

taken from a to b; however, there are special class of vector functions for which the 
value of line integral entirely depends upon the end points. A vector function that 
possesses this property is dubbed as a conservative; otherwise, it is non-conservative. 
For instance, electrostatic force and gravitational force are examples of conservative 
forces. 

Example 1.20 Evaluate the line integral for the function �V = y2x̂ + 2x(y + 1)ŷ 
along paths (1) and (2) as shown in Fig. 1.19

Fig. 1.18 Representation of 
a surface integral 
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Fig. 1.19 Path 
representation for line 
integral evaluation 

−→
dl = dxx̂ + dyŷ + dzẑ 

Solution: 

The path (1) has two parts (i) and (ii). 
Consider path (1) 

(i) 
−→
dl = dxx̂, dy = 0 and y = 1

�V · d�l = y2 dx = dx
∫

�V · d�l = 
2∫

1 

dx = 1 

(ii) 
−→
dl = dyŷ, dx = 0, x = 2 along y

�V · d�l = 2x(y + 1)dy = 4(y + 1)dy
∫

�V · d�l = 
2∫

1 

4ydy + 4 
2∫

1 

dy = 10 

Therefore, along path (1)

∫

�V · d�l(i) +
∫

�V · d�l(ii) = 11 

Along path (2) 

−→
dl = dxx̂ + dyŷ + dzẑ
�V = y2 x̂ + 2x(y + 1)ŷ 
x = y
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Therefore dx = dy

�V · d�l = x2 dx + 2x(x + 1)dx = 3x2 dx + 2xdx
∫

�V · d�l = 
2∫

1 

3x2 dx + 
2∫

1 

2xdx = 10

∮

�V · d�l = 11 − 10 = 1 

However, the value of integral depends upon the path; therefore, it is a non-
conservative vector function. 

1.25.2 Surface Integral 

An expression of the following form is dubbed as a surface integral

∮

S

�V · d�a 

where �V is some vector function and d�a being some infinitesimal area element, 
with the direction being normal to the surface. For closed surface resembling with 
balloon, a circle is put on the integral sign as

∮ �V · d�a. If the vector function under 
question represents a fluid flow, then the surface integral

∮ �V · d�a corresponds to the 
flux through the surface. Generally, the value of surface integral depends upon the 
particular surface chosen but we often encounter a special class of vector functions 
for which it is independent of the surface chosen and is entirely determined by the 
boundary line. Figure 1.20 illustrates the concept of the surface integral by depicting 
a vector field interacting with a surface. The surface is shown with differential area 
elements d�a, which are oriented normal to the surface at each point. If the surface is 
closed, such as a sphere or an arbitrary enclosed shape, the integral accounts for the 
net flow of the vector field �V across the surface.
Example 1.21 Evaluate the surface integral of the vector �V = 2xzx̂ + (x + 2)ŷ + 
y
(

z3 − 3
)

ẑ on the following cube excluding its bottom (Fig. 1.21).

Solution: 

Face (i): x = 2; d�a = dydzx̂

�V · d�a = 2xzdydz = 4zdydz
∫

�V · d�a = 4 
2∫

0 

zdz 

2∫

0 

dy = 16
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Fig. 1.20 Surface element 
representation in 3-D space

Fig. 1.21 Flux through a 
cubical surface in 3-D space

Face (ii): 

x = 0, d�a = dydz(−x̂) = −dydzx̂

�V · d�a = 2xz(−dydz) = 0
∫

�V · d�a = 0 

Face (iii): 

y = 2, d�a = dxdzŷ
�V · d�a = (x + 2)dxdz
∫

�V · d�a = 
2∫

0 

(x + 2)dx 
2∫

0 

dz = 12 

Face (iv):
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y = 0; d�a = −dxdzŷ

�V · d�a = −(x + 2)dxdz
∫

�V · d�a = −12 

Face (v):z = 2, d �a = dxdyẑ

�V · d�a = y
(

z3 − 3
)

dxdy
∫

�V · d�a = 4 

The surface integral on all the surfaces

∮

S

�V · d�a =
∮

i

�V · d�a +
∮

ii

�V · d�a +
∮

iii

�V · d�a +
∮

iv

�V · d�a +
∮

v

�V · d�a
∮

S

�V · d�a = 16 + 0 + 12 − 12 + 4 = 20 

1.25.3 Volume Integral 

If T is a scalar function, then volume integral of T is given by

∮

V 

T dτ 

where dτ is an infinitesimal volume element. The volume element in terms of 
Cartesian coordinates can be written as under 

dτ = dxdydz 

It is noteworthy that if T is the density of a substance, then the volume integral 
would result in the mass of the substance. Moreover, we usually come across volume 
integrals of vector functions in physics.

∫

�V dτV =
∫
(

Vx x̂ + Vy ŷ + Vzẑ
)

dτ = x̂
∫

Vxdτ + ŷ
∫

Vydτ + ẑ
∫

Vzdτ 

Each component of the vector function is integrated separately over the volume, and 
the result is a vector quantity.
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Fig. 1.22 A Prism  
represented in a 
three-dimensional Cartesian 
coordinate system 

Example 1.22 Calculate the volume integral of the function T = xyz2 over the prism 
as shown in Fig. 1.22

∫

T dτ =
∫

xyz2 dτ 

Solution: Here we have to couple x and y 

x : 0 → 1 − y 
y : 0 → 1 

The above integral can be written as:

∫

T dτ = 
3∫

0 

z2 

⎧ 
⎨ 

⎩ 

1∫

0 

y 

⎡ 

⎣ 
1−y∫

0 

xdx 

⎤ 

⎦dy 

⎫ 
⎬ 

⎭ dz

∫

T dτ = 
3∫

0 

z2 

⎧ 
⎨ 

⎩ 

1∫

0 

yx2 

2

∣
∣
∣
∣

1−y 

0 

dy 

⎫ 
⎬ 

⎭ dz

∫

T dτ = 
1 

2 

3∫

0 

z2 dz 

1∫

0 

(1 − y)2 ydy

∫

T dτ = 
3 

8
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1.26 Fundamental Theorem for Gradients 

The fundamental theorem for gradients refers to a basic result in vector calculus that 
connects the gradient of a scalar field to the change in that scalar field along a curve. 
It is often referred as the gradient theorem or fundamental theorem. Consider some 
scalar function T. If we have indefinite integral, we can write:

∫

dT = T (x) + c 

b∫

a 

dT = T (b) − T (a) 

Any integrable function has its antiderivative (Fig. 1.23). 

b∫

a 

F(x) = F(b) − F(a) (1.71) 

dT = �∇T · d�l
�∇ =

(
∂ 
∂x

)

x̂ +
(

∂ 
∂y

)

ŷ +
(

∂ 
∂z

)

ẑ 

−→
dl = dxx̂ + dyŷ + dzẑ

�∇T · −→dl =
(

∂T 

∂x

)

dx +
(

∂T 

∂y

)

dy +
(

∂T 

∂z

)

dz = dT 

b∫

a 

dT = 
b∫

a

�∇T · d�l = T (b) − T (a) (1.72) 

This is the fundamental theorem on gradients. Here we have converted the path 
dependence into path independence.

Fig. 1.23 Graphical 
representation of the 
fundamental theorem of 
calculus 
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Fig. 1.24 Representation of 
a closed path integral in a  
two-dimensional coordinate 
system 

Example 1.23 Evaluate the definite integral Here F(x) = 1 x , if  F(x) is derivative of 
another function ln(x), then we can write 

3∫

1 

1 

x 
dx = 

3∫

1 

ln(x)dx = ln(3) − ln(1) = ln(3) = 1.1 

Example 1.24 Let us assume that T = xy2 is some function. Let the coordinates of 
points a and b are (0, 0, 0) and (2, 1, 0), respectively. Verify the fundamental theorem 
of gradients for this function (Fig. 1.24). 

Here T = xy2; a (0, 0, 0) and b (2, 1, 0) 

−→
dl = dxx̂ + dyŷ + dzẑ

�∇T =
(

∂T 

∂x

)

x̂ +
(

∂T 

∂y

)

ŷ

�∇T · d�l = y2 dx + 2xydy 

Path (i) y = 0, d�l = dxx̂
∮

�∇T · d�l = 0 

Path (ii) x = 2, dx = 0, d�l = dyŷ

∫

�∇T · d�l =
∫

4ydy = 
1∫

0 

4ydy = 2 

Therefore, sum along paths (i) and (ii) is given by
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b∫

a

�∇T · d�l = T (b) − T (a) 

xy2 2,1| − xy2 0,0| = 2 − 0 = 2 

Path (iii) 

y = 
1 

2 
x 

dy = 
1 

2 
dx 

b∫

a

�∇T · d�l = 
2∫

0

(
1 

4 
x2 + 2x 

1 

2 
x 
1 

2

)

dx 

= 
3 

4 

2∫

0 

x2 dx = 2 

This verifies the path independence of the above-mentioned function. 

1.27 The Fundamental Theorem for Divergence 

It relates volume integral to the surface integral. It has great importance in the classical 
electrodynamics. It states that the volume integral of divergence of some vector field,
�V over a certain volume is equal to the surface integral of the vector field, �V over 
the closed surface bounding that volume. 

Thus, integrating both sides over a curve from a to b

∮

τ

�∇ · �V dτ =
∫

s

�V · d�a (1.73) 

The quantity �∇. �V represents how much a physical quantity is diverging in a 
volume and therefore corresponds to the flux of that physical quantity escaping 
through the closed surface. Consider a spherical surface, with charge at the centre. 
There are two ways to make the calculation as per the above-mentioned theorem, 
either we can calculate volume integral or we can integrate surface integral. In both 
the ways we get the same answer. 

Example 1.25 Verify divergence theorem for the function, �V = y2x̂+(2xy + z2
)

ŷ+ 
2yzẑ and the unit cube situated at the origin. 

Solution:
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�V = y2 x̂ + (

2xy + z2
)

ŷ + 2yzẑ

�∇. �V =
{(

∂ 
∂x

)

x̂ +
(

∂ 
∂y

)

ŷ +
(

∂ 
∂z

)

ẑ

}

.
{

y2 x̂ + (

2xy + z2
)

ŷ + 2yzẑ
}

�∇. �V = 0 + 2x + 2y = 2x + 2y = 2(x + y)
∮

V

�∇ · �V dτ =
∮

V 

2(x + y)dxdydz = 2 
1∫

0 

1∫

0 

1∫

0 

(x + y)dxdydz 

Since x + y does not depend on Z, we first integrate over z 

1∫

0 

dz = 1 

Thus, the integral reduces to 

2 

1∫

0 

1∫

0 

(x + y)dydx 

Computing the inner integral 

2 

1∫

0 

(x + y)dy = 2x + 1 

Now, computing over x 

1∫

0 

(2x + 1)dx = 2 

Thus, the volume integral is

∮

V

�∇ · �V dτ = 2 

Now, the surface integral is

∫

s

�V · n̂ds 

The cube has six faces:
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1. x = 0 (Left) 
2. x = 1 (Right) 
3. y = 0 (Front) 
4. y = 1 (Back) 
5. z = 0 (Bottom) 
6. z = 1 (Top) 

We will compute the flux through each face. 

Face x = 0 (normal n̂ = −l̂)

�V · −l̂ = −y2 

1∫

0 

1∫

0 

−y2 dydz = −  
1 

3 

Face x = 1 (normal n̂ = l̂)

�V · ̂l = y2 

1∫

0 

1∫

0 

y2 dydz = 
1 

3 

Face y = 0 (normal n̂ = −ĵ)

�V · −ĵ = −(2xy + z2 ) 
1∫

0 

1∫

0 

−z2 dxdz = −1 

3 

Face y = 1 (normal n̂ = ĵ)

�V · ̂j = (2xy + z2 ) 
1∫

0 

1∫

0 

(2x + z2 )dxdz = 
4 

3 

Face z = 0 (normal n̂ = −k̂)

�V · −k̂ = −2yz



50 1 Mathematical Tools for Electrodynamics

1∫

0 

1∫

0 

−2yzdxdy = 0 

Face z = 1 (normal n̂ = k̂)

�V k̂ = 2yz 
1∫

0 

1∫

0 

2ydxdy = 1 

Hence, the total surface integral is 

1 

3 
− 

1 

3 
− 

1 

3 
+ 

4 

3 
+ 0 + 1 = 2 

Thus, the surface integral matches the volume integral, verifying the Divergence 
Theorem. 

1.28 The Dirac Delta Function 

The Dirac delta function, designated as, δ(x) is a fundamental concept in mathematics 
and physics, particularly in the fields of electrodynamics and quantum mechanics. 
Notwithstanding its name, it’s not actually a “function” in the traditional sense, but 
rather a generalized function or distribution. We will provide its definition followed 
by a detailed discussion on its properties, applications and interpretation. 

1.28.1 Concept and Intuitive Definition 

The Dirac delta function is often described informally as a function that is zero 
everywhere except at x = 0, where it is infinitely high, in such a way that its total 
integral over the entire real line is 1, i.e., 

∞∫

−∞ 

δ(x)dx = 1 (1.74)
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The delta function can be perceived as the limit of a sequence of functions that 
peak more and more sharply at x = 0 while becoming narrower and maintaining a 
constant area under the curve equal to 1. 

1.28.2 Mathematical Definition 

Formally, the Dirac delta is defined by its action on a test function f (x) under an 
integral: 

∞∫

−∞ 

δ(x)f (x)dx = f (0) (1.75) 

It is evident from the above integral that when Dirac delta is operated upon some 
test function f (x), it results in the value of the function at x = 0. This is the key 
property of the delta function; essentially, it assumes the value of f (x) at a specific 
point. 

In more general terms, for any shift a ε R 

∞∫

−∞ 

δ(x − a)f (x)dx = f (a) (1.76) 

The Dirac delta δ(x − a) is a delta function centred at x = a. It is zero everywhere 
except at x = a and integrates to 1 over any interval that includes a. 

1.28.3 Properties of the Dirac Delta Function 

• Shifting Property: The delta function acts as a “shifting” function. Given a 
function f (x) and the delta function δ(x − a), the integral 

∞∫

−∞ 

δ(x − a)f (x)dx = f (a) (1.77) 

assumes the value of the function at x = a. This property makes the delta 
function useful in representing point sources or impulses. 

• Evenness: The Dirac delta is an even function, i.e., 

δ(x) = δ(−x) (1.78)
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• Scaling Property: The Dirac delta scales inversely with the scaling of the variable. 
If α is a non-zero constant, then 

δ(αx) = 
1 

|α| δ(x) (1.79) 

• Derivative: The Dirac delta function can be differentiated in the sense of 
distributions. For example, the derivative of δ(x) denoted as δ′(x) satisfies 

∞∫

−∞ 

δ′(x)f (x)dx = −f ′(0) (1.80) 

Example 1.26 Evaluate the integral I = ∫∞ 
−∞ δ(x − a)f (x)dx. 

Solution: 
By the shifting property of the Dirac delta function 

∞∫

−∞ 

δ(x − a)f (x)dx = f (a) 

Thus, the solution of the integral I = f (a). 

Example 1.26 Evaluate the following integral using the properties of the Dirac delta 
function 

∞∫

−∞ 

δ(x − 2)f (x)dx 

where f (x) is a continuous function. 
Solution: 

∞∫

−∞ 

δ(x − 2)f (x)dx = f (2) 

Example 1.27 Evaluate the integral 

∞∫

−∞ 

δ(3x − 6)g(x)dx 

Solution: First, use the scaling property of the Dirac delta function
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δ(ax − b) = 
1 

|a| δ
(

x − 
b 

a

)

For the given problem 

δ(3x − 6) = 
1 

|3| δ(x − 2) 

Now, 

∞∫

−∞ 

1 

|3| δ(x − 2)g(x)dx = 
1 

3 
g(2) 

1.29 Special Functions 

In electrodynamics, the solutions to boundary value problems heavily depend on the 
symmetry of the system. For problems with spherical symmetry, such as potentials 
around spheres or charge distributions with angular dependence, Legendre functions 
naturally arise. These functions efficiently describe the angular behaviour of fields 
and potentials, making them indispensable in problems like the electric potential of 
a conducting sphere or the multipole expansion of charge distributions. For systems 
with cylindrical symmetry, such as infinitely long wires, coaxial cables, or waveg-
uides, Bessel functions become essential. These functions characterize the radial 
dependence of fields in cylindrical geometries, providing solutions for problems 
like the potential around a charged cylinder or electromagnetic wave propagation in 
cylindrical waveguides. Together, they form the mathematical backbone for solving 
electrostatic and magnetostatic problems in these fundamental geometries, ensuring 
that boundary conditions are met and physical insights are preserved. 

1.29.1 Legendre Polynomials 

Legendre polynomials, denoted as Pn(x) where n is a non-negative integer, are a 
sequence of orthogonal polynomials that play a significant role in mathematical 
physics, especially in solving problems with spherical symmetry, electrodynamics 
and quantum mechanics. They satisfy the Legendre differential equation:

(

1 − x2
)d2Pn(x) 

dx2 
− 2x 

dPn(x) 
dx 

+ n(n + 1)Pn(x) = 0
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1.29.2 Properties of Legendre Polynomials 

1. Orthogonality: Legendre polynomials are orthogonal on the 
interval [−1, 1] with respect to the weight function w(x) = 1: 

1∫

−1 

Pm(x)Pn(x)dx = 0 for  m �= n (1.81) 

When m = n, this integral gives a constant proportional to 2 
2n+1 . 

2. Normalization: The polynomials can be normalized so that Pn(1) = 1 for all n. 
3. Recurrence Relation: Legendre polynomials satisfy a three-term recurrence 

relation, which allows the computation of higher-degree polynomials from lower 
ones: 

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (1.82) 

With P0(x) = 1 and P1(x) = x as initial conditions. 
4. Explicit Form: The Legendre polynomials can be represented explicitly using 

Rodrigue’s formula: 

Pn(x) = 
1 

2nn! 
dn 

dxn
(

x2 − 1
)n 

(1.83) 

This expression is useful for deriving specific polynomial terms and their 
properties. 

5. Orthogonality and Completeness in Function Expansion: Legendre polyno-
mials form a complete basis for representing functions defined on [−1, 1]. Any  
reasonable function f (x) defined in this interval can be expanded as a series: 

f (x) = 
∞
∑

n=0 

anPn(x) (1.84) 

where the coefficients an are determined by projecting f (x) onto 
each Pn(x) while using the orthogonality property. 

6. Parity: Pn(x) is an even function if n is even and an odd function if n is odd: 

Pn(−x) = (−1)n Pn(x) (1.85) 

7. Generating Function: Legendre polynomials have a generating function, which 
is especially useful in deriving properties and summing series:
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Fig. 1.25 Schematic representation of Legendre polynomials 

1 √
1 − 2xt + t2 

= 
∞
∑

n=0 

Pn(x)t
n (1.86) 

Figure 1.25 shows the first five Legendre polynomials, Pn(x) which are solutions 
to Legendre’s differential equation. The x-axis represents the variable x ranging from 
− 1 to 1, and the y-axis represents the value of the Legendre polynomials, Pn(x). The  
Legendre polynomials are orthogonal over the interval [−1, 1] and are frequently used 
in solving problems involving spherical symmetry in physics, such as electrostatic 
and gravitational potentials. 

From Fig. 1.25 P0(x) (in purple) is the 0th Legendre polynomial, which is a 
constant function equal to 1. P1(x) (in green) is the 1st Legendre polynomial, which 
is a linear function given by P1(x) = 1. P2(x) (in light blue) is the 2nd Legendre 
polynomial, a quadratic function P2(x) = 1 2

(

3x2 − 1
)

. P3(x) (in brown) is the 3rd 
Legendre polynomial, a cubic function P3(x) = 1 2

(

5x3 − 3x2
)

. P4(x) (in yellow) is 
the 4th Legendre polynomial, a quartic function P4(x) = 1 8

(

35x4 − 30x2 + 3
)

. 

1.29.3 Bessel Functions 

Bessel functions are a family of solutions to Bessel’s differential equation, which 
appears in a wide range of physics and engineering problems, particularly those 
involving cylindrical or spherical symmetry. Named after the mathematician 
Friedrich Bessel, these functions are indispensable in analysing wave propagation, 
potential problems and many other areas of applied mathematics. 

The standard form of Bessel’s differential equation is: 

x2 
d2 y 

dx2 
+ x 

dy 

dx 
+ (

x2 − n2
)

y = 0 (1.87)
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where n is a real or complex constant, often referred as the order of the Bessel function. 
Solutions to this equation, known as Bessel functions, are classified primarily into 
two main types: Bessel functions of the first kind Jn(x) and Bessel functions of the 
second kind Yn(x). 

1.29.4 Properties of Bessel Functions 

1. Orthogonality: Bessel functions of different orders Jn(x) are orthogonal with 
respect to a weighted inner product: 

1∫

0 

xJn
(

am,n, x
)

Jn
(

ak,n, x
)

dx = 0 for  m �= k (1.88) 

where am,n are the roots of Jn. Orthogonality is useful in solving boundary value 
problems in cylindrical coordinates. 

2. Recurrence Relations: Bessel functions satisfy several recurrence relations. For 
example, 

Jn+1(x) + Jn−1(x) = 
2n 

x 
Jn(x) 

Jn−1(x) − Jn+1(x) = 2J ′(x) (1.89) 

These relations allow computations of higher-order Bessel functions from lower-
order ones. 

3. Zeros of Bessel Functions: The zeros of Jn(x) are of interest in many physical 
applications, such as the vibration modes of a circular membrane. For each order 
n, the function Jn(x) has an infinite number of positive real zeros, which are 
typically denoted by Jn+k (x) for the kth zero of Jn(x). 

4. Integral Representations or Integer Order n: Bessel functions can also be 
represented by integrals. For instance, the Bessel function Jn(x) has an integral 
representation: 

Jn(x) = 
1 

π 

π∫

0 

cos(nt − x sin t)dt 

Integral representations are useful for theoretical derivations and numerical 
computations. 

Figure 1.26 is a plot of Bessel functions of the first kind, denoted as Jn(x), for  
different integer orders n ranging from 0 to 4.
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Fig. 1.26 Schematic representation of Bessel functions of first kind 

Unsolved Problems: 

Problem 1.1 Four points A (1, 2, 3), B (2, 0, 1), C (0, − 1, 4) and D (1, 1, 0) form 
a tetrahedron. Find the volume of this tetrahedron using vectors. 

Ans. 7 3 unit
3. 

Problem 1.2 Consider the vector field �F(x, y, z) = (

y2zî + x2zĵ + xy2 k̂
)

. 

(i) Compute the curl of the vector field �F(x, y, z). Ans.
(

2xy − x2
)

î+(2xz − 2yz)k̂. 
(ii) Evaluate the curl at the point (1, 2, 3). 

Ans. 3î − 6k̂ 

Problem 1.3 Verify Gauss divergence theorem for the vector field �F = x2 î+y2 ĵ+z2 k̂ 
over the surface of a cube with side of length 2, centred at origin (i.e., x, y, zε[−1, 1]). 

Problem 1.4 Evaluate the line integral for the scalar field f (x, y) = x2 + y2 along 
the straight line from (0, 0) to (1, 1). 

Ans. 2 
√
2 

3 

Problem 1.5 Evaluate the integral 

I = 
∞∫

−∞ 
x2δ
(

x2 − 1
)

dx 

Ans. 1 

Problem 1.6 Given that force �F = 4î + 5ĵN and displacement �d = 5î + 12ĵm. 
Calculate the work done W by a force �F over a displacement �d . 

Ans. 80 J. 

Problem 1.7 The vectors �A = 3î+4ĵ and �B = −5î+2ĵ are added to form a resultant 
vector �C = �A + �B. Find the magnitude of �C using law of cosines. 

Ans. 6.32.
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Problem 1.8 An electric dipole with dipole moment �p = 4îCm is placed in a uniform 
electric field �E = 10ĵN /C. Calculate the torque acting on the dipole. 

Ans. 40k̂ Nm. 

Problem 1.9 The vectors �A = 3î+ 4ĵ+ ̂k and �B = î− 2ĵ+ 2k̂ form a parallelogram. 
Find the area of the parallelogram. 

Ans. 15 units2 

Problem 1.10 Calculate the gradient of φ(�r) = 1 
|�r| and show that it aligns with the 

field of a point charge, i.e., �∇
(

1 
|�r|
)

= − �r 
|�r|3 . 

Problem 1.11 Evaluate the integral
∫∞ 
−∞ (3x + 2)δ(x − 1)dx 

Ans. 5 

Problem 1.12 Use the divergence theorem to evaluate the flux of the vector �F = r̂ 
r2 

over the surface of a sphere of radius R centred at the origin. 
Ans. 4π . 

Problem 1.13 Calculate the gradient of the scalar field (�r) = 1 
4πε0r 

and interpret it 
in terms of the Dirac delta function. 

Ans. δ(�r). 
Problem 1.14 Consider the vector field �G = zî − xî. Show that �∇. �G = 0 and verify 
that

∮

S
�G · d�A = 0 for any closed surface S. 

Problem 1.15 Show that
∫ +1 
−1 Pn(x)dx = 0, n �= 0. 

and
∫ +1 
−1 Pn(x)dx = 2, n = 0. 

Problem 1.16 Let Pn(x) be the Legendre polynomial of degree n. Show that for any 
function f (x), for which the nth derivative is continuous. 

+1∫

−1 

f (x)Pn(x)dx = 
(−1)n 

2nn! 
+1∫

−1

(

x2 − 1
)n 
f n (x)dx 

Problem 1.17 Show that J1/2(x) =
√
(

2 
π x
)

sin(x) and J−1/2(x) =
√
(

2 
π x
)

cos(x). 

Problem 1.18 Prove that
√
(

π x 
2

)

J3/2(x) = sin(x) x − cos(x). 

1.30 Summary 

• Definition of a Vector: A vector is defined as a mathematical object with both 
magnitude and direction, differentiating it from scalars, which possess only 
magnitude. Vectors are vital for describing physical quantities requiring both 
properties, such as force and velocity.
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• Vector Notation and Components: Vectors are represented symbolically by �A 
or by bold-faced letter A. On splitting it into components along the coordinate 
axes, each component reflects the vector’s magnitude along each direction. 

• Negative of a Vector: The negative vector −�A has the same magnitude as �A but 
points in the opposite direction. This concept is fundamental in vector algebra, 
especially for operations like subtraction. 

• Graphical Interpretation of Vectors: Vectors can be visualized as arrows, where 
the length represents magnitude, and direction is indicated by the arrowhead. 
Graphical representation aids in understanding vector operations such as addition. 

• Vector Addition: Adding vectors involves placing them head-to-tail to determine 
a resultant vector. This operation, crucial in physics and engineering, represents 
the combined effect of two or more vectors. 

• Scalar and Vector Multiplication 

– Scalar Multiplication: Involves multiplying a vector by a scalar, scaling its 
magnitude without changing its direction. 

– Dot Product (Scalar Product): Provides a scalar result that represents the 
projection of one vector onto another, used in work and energy calculations. 

– Cross Product (Vector Product): Results in a vector perpendicular to the plane 
of the original vectors, essential in calculating torque and angular momentum. 

• Triple Products 

– Scalar Triple Product: Determines the volume of a parallelepiped formed by 
three vectors. 

– Vector Triple Product: Represents a vector perpendicular to the plane defined 
by two vectors, simplifying complex vector operations. 

• Transformation of Vectors: Vector components adjust with changes in coordinate 
systems through transformation matrices. Tensors extend this concept, remaining 
invariant under such transformations. 

• Kronecker Delta and Levi–Civita Symbol 

– Kronecker Delta: Serves as a unit matrix in tensor notation, simplifying vector 
operations. 

– Levi–Civita Symbol: Facilitates defining cross products and tensor properties, 
essential for advanced vector manipulation. 

• Differential Calculus of Vectors 

– Gradient, Divergence and Curl: Key operations that describe how vectors 
vary in space, essential for analysing fields in physics. 

– Line, Surface and Volume Integrals: Represent physical phenomena like 
work, flux and charge distributions in space. 

• Dirac Delta Function: Acts as a generalized function to represent point sources 
or impulses in physics, central to electrodynamics and quantum mechanics.
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• Special Functions 

– Legendre Polynomials: Employed in spherical symmetry problems, aiding in 
solutions to differential equations. 

– Bessel Functions: Arise in cylindrical symmetry problems, relevant in wave 
propagation and electromagnetism. 

• This chapter provides a comprehensive introduction to vectors, vector oper-
ations and specialized functions, laying the groundwork for applications in 
electrodynamics involving spatial and directional quantities.



Chapter 2 
Boundary Value Problems-I 

Abstract This chapter focuses on the Laplace equation, ∇2V = 0, a fundamental 
equation in electrostatics and electrodynamics. Solutions in spherical coordinates 
are explored using the separation of variable technique, dividing the problem into 
radial, polar and azimuthal components. Key concepts include Legendre polyno-
mials, derived from the Legendre differential equation and Rodrigue’s formula, which 
naturally emerge in systems with spherical symmetry. Boundary conditions are anal-
ysed in both spherical and cylindrical coordinate systems. In spherical symmetry, 
solutions address potentials inside or outside spherical conductors, while cylindrical 
symmetry involves cylindrical geometries and often employs Bessel functions. Prac-
tical applications demonstrate the Laplace equation’s utility in determining electro-
static potentials under specified boundary values or symmetries, such as potentials 
on spherical shells or cylindrical conductors. The chapter also covers generating 
functions and recursion relations for Legendre polynomials, which are critical in 
solving boundary value problems with spherical symmetry. The First and Second 
Uniqueness Theorems are demonstrated, ensuring the uniqueness of solutions to the 
Laplace equation under given boundary or charge distribution conditions, reinforcing 
its strength in physical applications. 

Keywords Laplace equation · Spherical and cylindrical symmetry · Bessel 
functions and uniqueness theorems 

2.1 Introduction 

A special class of problems that we often encounter in electrostatics involve partic-
ular boundary conditions. Pertinently, depending on the scenario, either the electric 
potential or the surface charge density may be relevant for consideration, is fixed on 
the boundary surface involved in these problems. These problems are often solved 
explicitly by employing the technique of Green’s functions. However, the process 
is not too handy always. From time to time, a number of techniques have been
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employed to evaluate boundary value problems. The various techniques that have 
been formulated to solve boundary value problems are briefly summarized as follows. 

2.1.1 The Approach of Using Images 

This method is particularly useful for problems involving one or more-point charges 
in the vicinity of boundary surfaces. Notably, under stable conditions, it is often 
possible to deduce from the geometry of the system that a certain number of charges, 
positioned outside the region of interest, can be selected with appropriate magnitudes 
to satisfy the boundary conditions. These charges are referred as image charges and 
are, therefore, relevant in the usage of various image-based problems. This method 
or technique is depicted as the method of images. 

2.1.2 The Method of Orthogonal Expansion 

This method involves the solution of differential equations expressed as an expansion 
in orthogonal functions. This is a powerful technique employed in a wide variety 
of problems in electrostatics. The orthogonal set chosen depends on symmetries 
involved in a particular problem. 

2.1.3 The Finite Element Analysis (FEA) Technique 

This technique involves a wide variety of numerical methods for addressing boundary 
value problems that we usually encounter in physics and engineering. 

2.2 The Laplace Equation 

The Laplace equation is a cornerstone in physics, serving as one of the most funda-
mental and pivotal mathematical expression in widespread physical processes which 
is the solution to a wide variety of problems occurring in electrodynamics and thermo-
dynamics. Therefore, it is worthwhile to know how to solve this equation in various 
coordinate systems. We will try to solve this equation in spherical polar coordinate 
system. Pertinently, for the region or space where the charge density is zero, Poisson 
equation reduces to the Laplace equation. 

∇2 V = 
1 

r2 
∂ 
∂r

(
r 
∂V 

∂r

)
; V (r, θ, φ) (2.1)



2.2 The Laplace Equation 63

Fig. 2.1 Schematic 
representation of spherical 
polar coordinates 

Re-writing the above equation in spherical polar coordinates, we get 

∇2 V = 
1 

r2 
∂ 
∂r

(
r2 

∂V 

∂r

)
+ 1 

r2 sin(θ ) 
∂ 
∂θ

(
sin(θ ) 

∂V 

∂θ

)

+ 1 

r2 sin2 (θ ) 
∂2V 

∂φ2 
= 0 (2.2)  

where θ being the polar angle and φ the azimuthal angle. Using variable separation 
technique (Fig. 2.1). 

V (r, θ, φ) = 
U (r) 
r 

P(θ )Q(φ) (2.3) 

We take U (r) r to make solution of Laplace equation easy. U (r), P(θ ) and Q(φ) are 
potentials, which depends on r, θ  and φ, respectively. 

rV (r, θ, φ) = U (r)P(θ )Q(φ) 

Multiplying Eq. (2.2) with r
3 sin2(θ ) 
UPQ throughout, we get 

r2 sin2 (θ ) 
1 

U 

d2U 

dr2 
+ 

sin(θ ) 
P 

d 

dθ

(
sin(θ ) 

dP 

dθ

)
+ 

1 

Q 

d2Q 

dφ2 
= 0 (2.4)  

The first term in Eq. (2.4) depends on both r and θ, the second term solely depends 
on θ, however, the third term exclusively depends on φ. 

Suppose the first two terms of Eq. (2.4) are equal to m2 and the last term is equal 
to −m2 

1 

Q 

d2Q 

dφ2 
= −m2
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The resolution of this differential equation yields 

Qm(φ) = e±imφ = cos(mφ) ± i sin(mφ) 

These are the periodic functions, which means potential on the surface of sphere 
must be same; i.e., m must be an integer to force potential (Q) to be single valued 
(Fig. 2.2). 

φ = φ ± 2mπ 

r2 sin2 (θ ) 
1 

U 

d2U 

dr2 
+ 

sin(θ ) 
P 

d 

dθ

(
sin(θ ) 

dP 

dθ

)
= m2 (2.5) 

Dividing the above equation by sin2 (θ ), we get 

r2 

U 

d2U 

dr2 
+ 1 

P sin(θ ) 
d 

dθ

(
sin(θ ) 

dP 

dθ

)
− 

m2 

sin2 (θ ) 
= 0 (2.6) 

The first term of Eq. (2.6) is function of r, the second term depends on θ and the 
last term is exclusively dependent on (θ,  φ). 

Put first term of Eq. (2.6) equal to α2 and sum of second and third terms equal to 
−α2 

r2 

U 

d2U 

dr2 
= α2 

d2U 

dr2 
= 

α2 

r2 
U (2.7)

Fig. 2.2 A spherical 
distribution of charge Q 
contained inside a grounded 
conducting sphere of radius a 
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Consider the power series solution of Eq. (2.7) as follows: 

U ∼ rρ (2.8) 

Differentiate equation twice with respect to ρ, we get 

U ′′ ∼ ρ(ρ − 1)rρ−2 (2.9) 

Substitute the expressions from Eqs. (2.8) and (2.9) into Eq. (2.7), we get 

ρ(ρ − 1)rρ−2 = 
α2 

r2 
rρ = α2 rρ−2 

Let, 

ρ(ρ − 1) = α2 (2.10) 

Both ρ and α are undetermined constants. 
In order to simplify our calculation, suppose α2 = l(l + 1), where l being the 

constant 

ρ(ρ − 1) = α2 = l(l + 1) 
ρ2 − ρ − l(l + 1) = 0 (2.11) 

Which is the quadratic equation in ρ and hence solving it, we get 

ρ+ = l + 1; ρ− = −l 

As a result, the solution corresponding to the radial component is: 

U (r) = Arρ+ + Brρ− 
(2.12) 

But we know V (r) = U r . 
Therefore, 

V (r) = Arl + Br−(l+1) (2.13) 

This is the solution of the radial part, where l is still to be determined. 
Consider the second and third terms of Eq. (2.6) 

l(l + 1) + 1 

P sin(θ ) 
d 

dθ

(
sin(θ ) 

dP 

dθ

)
− m2 

sin2 (θ ) 
= 0 (2.14)
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Multiplying Eq. (2.14) by  P throughout, we get 

1 

sin(θ ) 
d 

dθ

(
sin(θ ) 

dP 

dθ

)
+

[
l(l + 1) − m2 

sin2 (θ )

]
P = 0 (2.15) 

Which is the generalized Legendre differential equation. In order to simplify this 
equation, we consider a normalized unit circle. Let us consider the following variable 
transformation: 

x = cos(θ ); y = sin(θ ) 

By changing the rule of differentiation, we get 

d 

dθ 
= 

dx 

dθ 
d 

dx 
= −  sin(θ ) 

d 

dx 
(2.16) 

Multiplying Eq. (2.16) by  sin(θ ) throughout, we get 

sin(θ ) 
d 

dθ 
= −  sin2 (θ ) 

d 

dx 
= −(

1 − cos2 (θ )
) d 
dx 

sin(θ ) 
d 

dθ 
= −(

1 − x2
) d 
dx

; 1 

sin(θ ) 
d 

dθ 
= −  

d 

dx 
(2.17) 

Using Eq. (2.17) in Eq.  (2.15), we get 

d 

dx

[(
1 − x2

)dP 
dx

]
+

[
l(l + 1) − m2 

1 − x2

]
P = 0 (2.18) 

This is also generalized Legendre differential equation, but in different style. This 
equation is very difficult to solve; therefore, we consider azimuthal symmetry. 

2.2.1 Azimuthal Symmetry 

To make calculations easy and simple, we assume azimuthal symmetry, meaning 
that our parameter V does not dependent on ϕ. Simply put, the partial derivative of 
V with respect to ϕ equal to zero. Considering the below-mentioned equation 

d 

dx

[(
1 − x2

)dP 
dx

]
+ l(l + 1)P = 0 (2.19) 

Re-writing the above equation, we obtain
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(
1 − x2

)d2P 

dx2 
− 2x 

dP 

dx 
+ l(l + 1)P = 0 (2.20) 

When x = cos(θ ); 0 ≤ θ ≤ π or 1 ≤ θ ≤− 1. 
Further, Eq. (2.20) can be written as follows: 

d2P 

dx2 
− x2 

d2P 

dx2 
− 2x 

dP 

dx 
+ l(l + 1)P = 0 (2.21) 

This is the Legendre differential equation with azimuthal symmetry. Re-writing 
Eq. (2.21) while using P, P′ and P′′, it can exhibit as follows: 

P′′ − x2 P′′ − 2xP′ − 2xP′ + l(l + 1)P = 0 (2.22) 

Assuming power series solution of Legendre differential equation 

P(x) = a0 + a1x + a2x2 + a3x3 + a4x4 +  · · ·  +  anxn (2.23) 

Differentiate above equation with respect to x, we get 

P′(x) = a1 + 2a2x + 3a3x2 + 4a4x3 +  · · ·  +  nanxn−1 (2.24) 

Further, differentiating Eq. (2.24) with respect to x, we get 

P′′(x) = 2a2 + 6a3x + 12a4x2 +  · · ·  +  n(n − 1)anxn−2 (2.25) 

In order to solve Eq. (2.22), all the coefficients should be zero. To make calculation 
easy and simple, we will arrange the coefficients in the tabular form as under. 

Constant x x2 x3 …xn 

P′′ 2a2 6a3 12a4 20a5 (n + 1)(n + 2)an+2 

−x2P′′ – – −2a2 −6a3 −n(n − 1)an 
−2xP′ – −2a1 −4a2 −6a3 −2nan 

l(l + 1)P l(l + 1)a0 l(l + 1)a1 l(l + 1)a2 l(l + 1)a3 l(l + 1)an 

Thus, to solve Eq. (2.22), we insert Eqs. (2.23), (2.24), and (2.25) in Eq.  (2.22). 
Further, we equate all the coefficients with zero. Let us equate constant term with 
zero, we get. 

2a2 + l(l + 1)a0 = 0 

Solving it further, we get 

a2 = −  
l(l + 1)a0 

2 
(2.26)
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Further, we equate the coefficient of x with zero, and therefore, we obtain. 

a3 = 
−(l − 1)(l + 2)a1 

3! (2.27) 

Furthermore, we equate the coefficient of x2 with zero and solving it, we get 

a4 = 
l(l + 1)(l − 2)(l + 3)a0 

4! (2.28) 

Similarly, we equate the coefficient of x3 with zero and solving it further, we get 

a5 = 
(l − 1)(l + 2)(l − 3)(l + 4)a1 

5! (2.29) 

Proceeding in the same manner we equate the coefficient of xn with zero and, 
therefore, we get. 

an+2 = 
(n − l)(n + l + 1)an 

(n + 1)(n + 2) 
(2.30) 

Which is the recursion relation, it can produce all the coefficients. 
If we start from n = 0, we will generate even series as a0, a2, a4,… and if we start 

from n = 1, we will generate odd series as a1, a3, a5,…. Consequently, solutions to 
the second-order Legendre differential equation is the combination of even and odd 
series. We need to determine a0, a1, ….from the initial conditions. 

P(x) = a0 + a2x2 + a4x4 + a1x + a3x3 + +a5x
5 +  · · ·  +  anxn (2.31) 

Further, we solve it and re-write it as follows: 

P(x) = a0
[
1 − 

l(l + 1)x2 

2
+ 

l(l + 1)(l − 2)(l + 3)x4 

4! +  · · ·
]

+ a1
[
x − 

(l − 1)(l + 2)x3 

3! + 
(l − 1)(l + 2)(l − 3)(l + 4)x5 

5! +  · · ·
]

(2.32) 

The solution converges for x2 < 1 and diverges for x2 ≥ 1. Consider a1 series 

x − 
(l − 1)(l + 2)x3 

3! + 
(l − 1)(l + 2)(l − 3)(l + 4)x5 

5! +  · · · (2.33) 

For l = 0 and x = 1 

x − 
(l − 1)(l + 2)x3 

3! + 
(l − 1)(l + 2)(l − 3)(l + 4)x5 

5! +  · · ·  =  1 + 
1 

3 
+ 

1 

5 
+  · · ·  
(2.34)
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Since a1 series diverges and a0 series converges. This can be shown using integral 
test. 

P(x) = a0, for  l = 0, in case of even solutions 
On the other hand, for l = 1 and x = 1. a0 series diverges and a1 stops at a1x. 

P(x) = a1x, for l = 1, 

in case of odd solutions 
We will not consider the negative values of l, because it will reproduce earlier 

results. For example, l = −2 will reproduce P(x) = a1x. 
Therefore, the set of Legendre polynomial will be generated from Rodrigue’s 

formula given by 

Pl(x) = 
1 

2l l!
(
d 

dx

)l(
x2 − 1

)l 
(2.35) 

However, for x = 0, 1 and 2, we get from above equation 

P0(x) = 1;P1(x) = x, ; P2(x) = 
1 

2

(
3x2 − 1

)

Further, if we substitute x = cos(θ ) in above, we get 

P0(cos(θ )) = 1; P1(cos(θ )) = cos(θ ) and 

P2(cos(θ )) = 
1 

2

(
3 cos2 (θ ) − 1

)
(2.36) 

Therefore, we conclude that the solution of Legendre differential equation with 
azimuthal symmetry is given by: 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l + Blr
−(l+1)

)
Pl(cos θ ) (2.37) 

In order to determine V (r, θ  ), we have to determine Al , Bl and Pl(cos θ ). 

Properties of Legendre Polynomials: 

1. Legendre equation with azimuthal symmetry looks like an eigenvalue problem 
as follows: 

d 

dx

[(
1 − x2

)dP 
dx

]
= −l(l + 1)P (2.38) 

However, the above equation can be rewritten as follows: 

L̂P = �P (2.39)
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where 

L̂ = 
d 

dx

[(
1 − x2

) d 
dx

]
and � = −l(l + 1) (2.40) 

Furthermore, we can prove that L̂ = L̂†; i.e., L̂ is Hermitian operator and has 
therefore, real Eigen values given by l(l + 1). 

2. The eigenfunctions associated with different eigenvalues are orthonormal. 

1∫
−1 

Pl′(x)Pl(x)dx = 2 

2l + 1 
δl′l (2.41) 

Example 2.1 Let a conducting spherical surface of radius ‘a’ with a potential V (θ ) 
defined on its surface. Assume there are no free charges present within or outside 
the sphere. Using the appropriate boundary conditions deduce the electric potential 
everywhere within the sphere, particularly at the origin. 

Solution: 

The solution of the Legendre differential equation with azimuthal symmetry is 
exhibited as 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l + Blr
−(l+1)

)
Pl(cos θ ) (2.42) 

We know that outside sphere, Al = 0 and inside the sphere, Bl = 0. Therefore, 
potential within the sphere is given by (Fig. 2.3): 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l
)
Pl(cos θ ) (2.43)

However, for the surface of the sphere, r = a. Therefore, Eq. (2.43) assumes the  
following form 

V (θ ) = 
∞∑
l=0

(
Ala

l
)
Pl(cos θ ) (2.44) 

V (θ ) is the expansion with unknown coefficients Alal . In order to determine Al 

we have to consider inner product keeping in mind x = cos(θ ); dx = −  sin(θ )dθ

(Pl′ , V (θ )) = 
∞∑
l=0

(
Ala

l
)
(Pl′ , Pl)
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Fig. 2.3 A sphere of radius 
a

= 
∞∑
l=0

(
Ala

l
) 2 

2l + 1 
δl′l (2.45)

Therefore, we conclude that 

Al = 
2l + 1 
2al 

(Pl, V (θ )) (2.46) 

Equation (2.46) can be illustrated in integral form as follows: 

Al = 
2l + 1 
2al 

π∫
0 

dθ sin(θ )Pl(cos θ )V (θ ) (2.47) 

On substituting value of Al in V (r, θ  ) = ∑∞ 
l=0

(
Alrl

)
Pl(cos θ ), we can get 

potential inside the sphere. 

Example 2.2 Consider a spherical conductor with a radius a, designed from two 
interlocking hemispherical shells. The hemispheres are kept at equal and opposite 
potentials given by 

V (θ ) =
{ +V

(
0 ≤ θ ≤ π 

2

)
−V

(
π 
2 ≤ θ ≤ π

)

Prove that the potential with in the sphere is exhibited as follows: 

V (r, θ  ) = V
[
1 + 

3 

2 
r/aP1(cos θ ) − 

7 

8 
(r/a)3 P3(cos θ ) 

+ 
11 

16 
(r/a)5 P5(cos θ ) +  · · ·

]
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Here P
′s 
l (cos θ ) are the Legendre polynomials. 

Solution: 

V (θ ) =
{ +V

(
0 ≤ θ ≤ π 

2

)
−V

(
π 
2 ≤ θ ≤ π

) (0 ≤ cos θ ≤ 1) 
(−1 ≤ cos θ ≤ 0) 

Inside the sphere, Bl = 0. Therefore, Eq. (2.47) can be written as follows (Fig. 2.4): 

Al = 
2l + 1 
2al 

1∫
−1 

dxPl(x)V (x) (2.48) 

Al = 
2l + 1 
2al 

⎡ 

⎣ 
1∫

0 

dxPl(x)V (x) + 
0∫

−1 

dxPl(x)(−V (x)) 

⎤ 

⎦ (2.49) 

It is very laborious to solve this integral. Thus, to get Al we use generating function. 
In order to consider the generating function, we examine the potential due to a point 
charge on the z-axis as viewed from another point. The fundamental expression for 
the potential in terms of distances r and r′ is 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l
)
Pl(cos θ ) (2.50) 

We notice that only odd values of Ɩ will generate non-zero result.

Fig. 2.4 A spherical 
conducting shell of radius a 
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P0(x), P2(x), P4(x), . . . . . .  will yield zero value. In another perspective, 
P1(x), P3(x), P5(x), . . . . . .  will yield non-zero result. Let us substantiate our 

argument. However, we know that, P0(x) = 1. 

Pertinently, V is constant and, therefore, it can be pulled outside the integral in 
Eq. (2.49), we get 

1∫
0 

dx − 
0∫

−1 

dx = 0 

For P1(x) = x, Eq.  (2.49) becomes 

1∫
0 

xdx − 
0∫

−1 

xdx = 2(1/2) = 1 

So, for odd l values, we get Al as follows: 

Al = 
2l + 1 
2al 

2V 

⎡ 

⎣ 
1∫

0 

dxPl(x) 

⎤ 

⎦ (2.51) 

If we put Pl(x) from Rodrigue’s formula as, Pl(x) = 1 
2l l!

(
d 
dx

)l(
x2 − 1

)l 
, Eq.  (2.49) 

becomes 

Al = 
2l + 1 
2al 

2V 

⎡ 

⎣ 
1∫

0 

dx 
1 

2l l!
(
d 

dx

)l(
x2 − 1

)l 
⎤ 

⎦ (2.52) 

It is very laborious to solve this integral. Thus, to get Al we use generating function. 
In order to consider the generating function, we examine the potential due to a point 
charge on the z-axis as viewed from another point. The fundamental expression for 
the potential in terms of distances r and r′ is 

1 

|�r − �r′| =
1 √

r2 + r′2 − 2rr′ cos θ 
1 

|�r − �r′| =
1 

r 
√
1 + (

r′
r

)2 − 2 r′
r cos θ 

We assume that r′ ≤ r; r′
r ≤ 1 and put r′

r = t, x = cos θ . The generating function 
is defined as:
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g(x, t) = 1 √
1 + (t)2 − 2tx 

(2.53) 

The generating function can be enunciated in power series as follows: 

g(x, t) = 
∞∑
n=0 

Pn(x)t
n (2.54) 

And from which, Pn can be illustrated as under 

Pn(x) = 
1 

n! 
∂n 

∂tn 
g(x, t)t→0 (2.55) 

We define, 

Il = In = 
1∫

0 

dxPn(x) (2.56) 

IG = 
1∫

0 

dxg(x, t) = 
1∫

0 

dx 
1 √

1 + (t)2 − 2tx 

= 
∞∑
n=0 

1∫
0 

dxPn(x)t
n = 

∞∑
n=0 

Int
n 

∞∑
n=0 

Int
n = I0t0 + I1t1 + I2t2 + I3t3 + I4t4 +  · · ·  

IG = 
−1 

t 

√
1 + (t)2 − 2tx

∣∣∣∣
1 

0 

IG = 
−1 

t

[
(1 − t) −

√
1 + t2

]
(2.57) 

In order to solve the second term on the R.H.S of Eq. (2.57), we assume that, 
x = t2. Therefore, we get 

√
1 + x = 1 + 

x 

2! + 
1 

2! (1/2)(−1/2)x2 + 
1 

3! (1/2)(−1/2)(−3/2)x3 +  · · ·  

We can write above equation more explicitly as under: 

√
1 + x = 1 − 

∞∑
k=1 

(2k − 3)!! 
(2k)!! (−1)k xk (2.58)
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Substitute, Eq. (2.58) in Eq.  (2.57), we get 

IG = 
−1 

t

[
1 − t − 1 + 

∞∑
k=1 

(2k − 3)!! 
(2k)!! (−1)k t2k

]
= 

∞∑
n=0 

Int
n 

IG = 1 − 
∞∑
k=1 

(2k − 3)!! 
(2k)!! (−1)k t2k−1 (2.59) 

I0 = 1; I1 = 1/2; I2 = 0; I3 = −1/8; I4 = 0. 

We notice, that among even IG only I0, will contribute. Therefore, for k > 0, the  
general result is given by 

I2k−1 = −(−1)k 
(2k − 3)!! 

2k!! 
where k = 1, 2, 3…. 

Al = 
(2l + 1)2VIl 

2al
= 

(2l + 1)VIl 
al 

(2.60) 

For, l = 2k − 1, Eq. (2.60) becomes 

Al=2k−1 = V 

a2k−1 
[2(2k − 1) + 1](−1)k+1 (2k − 3)!! 

2k!! (2.61) 

For even values of l, only l = 0 will contribute, i.e.,I0 = 1 
Hence, we get A0 = V . 
Therefore, the solution is given by 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l
)
Pl(cos θ ) 

Here, l = 2k − 1, hence the above equation becomes 

V (r, θ  ) = V − V 
∞∑
k=1 

(r/a)2k−1 (4k − 1) 
(2k − 3)!! 

2k!! (−1)k P2k−1(cos θ ) (2.62) 

Expanding first few terms, we get 

V (r, θ  ) = V
[
1 + 

3 

2 
r/aP1(cos θ ) − 

7 

8 
(r/a)3 P3(cos θ ) 

+ 
11 

16 
(r/a)5 P5(cos θ ) +  · · ·

]
(2.63)
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This is the solution of the sphere, with hemispheres at different potentials (Inside). 
In order to evaluate the potential just outside the sphere, Al = 0, and Bl �= 0. So, 
we can replace (r/a)l by (a/r)l+1 . In this way we can calculate potential outside the 
sphere. 

Example 2.3 Let V (θ ) = k cos 3θ , where k is some constant, be the potential on the 
surface of the sphere of radius R. Deduce the following: 

1. The potential inside the sphere (r < R). 
2. The potential outside the sphere (r > R). 
3. The surface charge density σ(θ) on the sphere. 

Solution: 

The solution to the Legendre differential equation with azimuthal symmetry is 
expressed by Eq. (2.42). Pertinently, Bl = 0, inside the sphere, therefore, Eq. (2.36) 
assumes the following form 

V (r, θ  ) = 
∞∑
l=0

(
Alr

l
)
Pl(cos θ ) (2.64) 

However, outside the sphere, Al = 0. Therefore, Eq. (2.38) becomes 

V (r, θ  ) = 
∞∑
l=0

(
Bl 

rl+1

)
Pl(cos θ ) (2.65) 

On the surface of the sphere 

V (θ ) = k cos 3θ (2.66) 

We know that 

cos 3θ = 4 cos3 θ − 3 cos θ (2.67) 

We can write above equation in terms of Legendre polynomial as: 

cos 3θ = aP3(cos θ ) + bP1(cos θ ) 

cos 3θ = a
(
5 cos3 θ − 3 cos θ

)
2

+ bP1(cos θ ) 

cos 3θ = 
5a cos3 θ 

2
+

(−3a cos θ 
2

+ b cos θ
)

(2.68) 

Equating the coefficients of Eqs. (2.67) and (2.68), we get 

5a 

2 
= 4; a = 8/5
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And 

−3a 

2 
+ b = −3; b = −3/5 

We could get the potential on the surface of the sphere by inserting Eq. (2.68) in  
Eq. (2.66), and hence, we obtain 

V (θ ) = k cos 3θ = 
k 

5 
(8P3(cos θ ) − 3P1(cos θ )) (2.69) 

The solution on the surface of the sphere is written as follows: 

V (r, θ  ) = V (θ ) = 
∞∑
l=0

(
AlR

l
)
Pl(cos θ ) (2.70) 

= 
k 

5 
(8P3(cos θ ) − 3P1(cos θ )) (2.71) 

We know from an orthonormal condition of Legendre polynomial 

π∫
0 

dθ sin(θ )Pl(cos θ )Pl′(cos θ ) = 2 

2l + 1 

If we multiply Eq. (2.70) by  Pl′(cos θ )dθ sin(θ ) on both sides then the term l′ = l 
will survive 

A1R(2/3) = 
k 

5 
(−3) 

π∫
0 

P1(cos θ )P1(cos θ ) sin(θ )d θ 

A1R(2/3) = 
−3k 

5 
(2/3) 

A1 = 
−3k 

5R 
(2.72) 

Similarly, for A3 

A3R
3 (2/7) = 

8k 

5 

π∫
0 

(P3(cos θ ))2 sin(θ )dθ 

A3 = 
8k 

5R3 
(2.73)
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V (r, θ  ) = V (θ ) = 
∞∑
l=0

(
Alr

l
)
Pl(cos θ ) 

= 
−3k 

5R 
rP1(cos θ ) + 

8k 

5R3 
r3 P3(cos θ ) 

= 
k 

5
{8(r/R)3 P3(cos θ ) − 3(r/R)P1(cos θ )} 

σ (θ ) = 
ε0k 

5

(
56 

R 
P3(cos θ ) − 

9 

R 
P1(cos θ )

)
(2.74) 

On the surface 

∞∑
l=0

(
AlR

l
)
Pl(cos θ ) = 

∞∑
l=0 

Bl 

Rl+1 
Pl(cos θ ) 

∇2 V = 
1 

r 

∂ 
∂r

(
r 
∂V 

∂r

)
+ 

1 

r2 
∂2V 

∂φ2 
+ 

∂2V 

∂z2 
= 0 (2.75) 

A1, A2 → B1, B2 

B1 = R3 A1 = R3

(−3k 

5R

)

B1 = −3kR2 

5 

B3 = A3R
7 =

(
8k 

5R3

)
R7 = 

8k 

5 
R4 

V (r, θ  ) = 
∞∑
l=0 

Bl 

rl+1 
Pl(cos θ ) + 

B3 

r4 
P3(cos θ ) 

= 
−3k 

5 

B2 

r2 
P1(cos θ ) + 

8k 

5 

R4 

r4 
P3(cos θ ) 

Vout(r, θ  ) = 
k 

5

(
8

(
R 

r

)4 

P3(cos θ ) − 3(R/r)2 P1(cos θ )

)
(2.76) 

In order to find surface charge density, we use boundary conditions 

∂Voutside 

∂r 
− 

∂Vinside 

∂r 
= −  

σ (θ ) 
ε0 

k 

5

(
8R4

(−4r−5
)
P3(cos θ ) − 3R2

(−2r−3 P1(cos θ )
))

− 
k 

5

(
8

(
3r2 

R3

)
P3(cos θ ) − 

3 

R 
P1(cos θ )

)
= −σ (θ ) 

ε0 
(2.77)
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The surface charge density is given by inserting r = R in above expression and 
solving it further we get 

σ (θ ) = 
ε0k 

5

(
56 

R 
P3(cos θ ) − 

9 

R 
P1(cos θ )

)
(2.78) 

2.2.2 Cylindrical Symmetry of Laplace Equation 

The Laplace equation in cylindrical coordinates is a critical mathematical framework 
used to describe physical systems with cylindrical symmetry, spanning applications 
in fluid mechanics, electromagnetism, acoustics, and heat transfer. Its solutions are 
fundamental to understanding various phenomena, including the distribution of elec-
tric potential, the behaviour of sound waves in cylindrical ducts, and the flow of 
fluids in pipes. The power of this equation lies in its ability to model situations where 
boundary conditions are imposed on cylindrical or circular geometries, which are 
common in both natural and engineered systems. 

Writing Eq. (2.1) in cylindrical coordinates, we get 

∇2 V = 
1 

r 

∂ 
∂r

(
r 
∂V 

∂r

)
+ 

1 

r2 
∂2V 

∂φ2 
+ 

∂2V 

∂z2 
= 0 (2.79) 

Here, r represents the radial coordinate, φ represents the azimuthal angle measured 
in the plane, and z indicates the vertical height along the z-axis. The importance 
of the cylindrical symmetry is that it removes Bessel functions from the solution 
of second-order differential equation. For symmetrical case where potential is not 
function of z, we can drop z-term. We employ the variable separable technique as 
follows: 

V (r, φ) = R(r)F(φ) (2.80) 

Substitute Eq. (2.80) in Eq.  (2.79) while dropping z-term in the later equation, we 
get 

F 

r 

d 

dr

(
r 
dR 

dr

)
+ 

R 

r2 
d2F 

dφ2 
= 0 (2.81) 

Each term in above equation is the function of (r, φ), and therefore, we multiply 
above equation by r2 

R(r)F(φ) throughout. 

r 

R 

d 

dr

(
r 
dR 

dr

)
+ 

1 

F 

d2F 

dφ2 
= 0 (2.82)
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The first term in Eq. (2.82) depends on r alone; however, the second term exclu-
sively depends on φ. We assume that the first and second terms are equal to n2 and 
− n2, respectively, except n �= 0. Therefore, we write 

r 

R 

d 

dr

(
r 
dR 

dr

)
= n2 (2.83) 

Also, we write 

1 

F 

d2F 

dφ2 
= −n2 (2.84) 

Consider Eq. (2.83) and simplify it further, we get 

r 

R 

d 

dr

(
r 
dR 

dr

)
= n2 

r
[
rR′′ + R′] = n2 R[
r2 R′′ + rR′] − n2 R = 0 (2.85) 

We examine the series solution of this expression as follows: 

R(r) = rλ (2.86) 

Differentiate it with respect to λ ,we get 

R′(r) = λrλ−1 (2.87) 

Again differentiating it, we get 

R′′(r) = λ(λ − 1)rλ−2 (2.88) 

By inserting Eqs. (2.86), (2.87) and (2.88) into Eq. (2.85), we conclude 

λ(λ − 1)rλ + λrλ − n2 rλ = 0 
λ2 − n2 = 0 
λ = ±n 

Hence the solution of the r part is given by 

R(r) =
(
Arn + 

B 

rn

)
, were n �= 0 (2.89) 

And the solution of the φ part is given by:
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F(φ) = (C sin(nφ) + D cos(nφ)) (2.90) 

Therefore, the solution V (r, φ) = R(r)F(φ) 

V (r, φ) = 
∞∑
n=1

(
Arn + 

B 

rn

)
(C sin(nφ) + D cos(nφ)) (2.91) 

This is the generalized solution of electric potential in cylindrical symmetry, while 
assuming that n �= 0. 

It is worthwhile to mention that A = 0 outside the cylinder and B = 0 inside  it. 
Further, we check what happen for n = 0. From Eq.  (2.82), we can write 

r 

R 

d 

dr

(
r 
dR 

dr

)
= 0 

r 
dR 

dr 
= a1∫

dR =
∫

a1 
dr 

r 

R(r) = a1 log(r) + b1 (2.92) 

Which is valid only for n = 0. Also, from Eq. (2.83), we can write 

1 

F 

d2F 

dφ2 
= 0 

dF 

dφ 
= c1 

F(φ) = c1φ + d1 (2.93) 

Which is also valid for n = 0. Thus, the solution is given by 

V (r, φ) = [
a1 log(r) + b1

]
[c1φ + d1] (2.94) 

Hence, the general solution is given by 

V (r, φ) = ([
a1 log(r) + b1

]
[c1φ + d1]

)

+
( ∞∑

n=1

(
Arn + 

B 

rn

)
(C sin(nφ) + D cos(nφ))

)
(2.95) 

where the constants can be ascertained from the initial boundary values. For instance, 
we consider the term 

V (r, φ) = a1 log(r) + b1 (2.96)
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By definition as r → ∞, V → 0, which implies a1 = 0. 
So, 

V (r, φ) = b1 (2.97) 

Further, we consider the term 

V (r, φ) = c1φ + d1 (2.98) 

where 0 ≤ φ ≤ 2π 
Potential should remain unchanged after 2nπ rotations 

V (r, φ  + 1000π ) = c1(φ + 1000π ) + d1 (2.99) 

This shows symmetric potential is increasing, which is devoid of physical 
significance. Hence, we have to set c1 = 0 

V (r, φ) = d1 (2.100) 

Hence, we can write,

([
a1 log(r) + b1

]
[c1φ + d1]

) = b1d1 = constant (2.101) 

V (r, φ) = a0 2 , electric potential is constant rather than dependent on (r, φ). 

V (r, φ) =
( ∞∑

n=1

(
Arn + 

B 

rn

)
(C sin(nφ) + D cos(nφ))

)

As there are too many constants, we will redefine all these constants like AC = An; 
AD = Bn; BC = Cn; and BD = Dn; 

V (r, φ) = 
∞∑
n=1 

[(An sin(nφ) + Bn cos(nφ))]rn 

+ 
∞∑
n=1 

[(Cn sin(nφ) + Dn cos(nφ))] 
1 

rn 
(2.102) 

Let, a be the radius of the cylinder, we will also try to absorb the radius of the 
cylinder with in a constant, so we will redefine the constants. 

V (r, φ) = 
∞∑
n=1 

[(an sin(nφ) + bn cos(nφ))](r/a)n
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+ 
∞∑
n=1 

[(cn sin(nφ) + dn cos(nφ))](a/r)n (2.103) 

The ratio (r/a)n and (a/r)n decides the potential outside the cylinder and inside 
it, respectively. Together, with all the terms we can write the general solution of 
Laplace equation with cylindrical symmetry as: dn = −  v0 nφ ((−1)n − 1) 

V (r, φ) = 
a0 
2 

+ 
∞∑
n=1 

[(an sin(nφ) + bn cos(nφ))](r/a)n 

+ 
∞∑
n=1 

[(cn sin(nφ) + dn cos(nφ))](a/r)n (2.104) 

provides a powerful framework for solving Laplace’s equation in cylindrical geome-
tries. The specific form of the potential depends on the boundary values. This solution 
is essential in problems involving charged conductors, boundary value problems and 
situations involving cylindrical symmetry. 

Example 2.5 Consider a cylinder where the potential is defined as follows: 

V (a, φ) =
{
V0; 0 ≤ φ ≤ π 
0; π ≤ φ ≤ 2π 

Find the potential outside as well as inside the cylinder? (Fig. 2.5) 

Solution: 

(a) For outside cylinder r > a, the solution is given by 

V (r, φ) = 
a0 
2 

+ 
∞∑
n=1 

[(cn sin(nφ) + dn cos(nφ))](a/r)n (2.105) 

Using the boundary conditions, we can determine Fourier coefficients 

a0 
2 

= 
1 

2π 

2π∫
0 

V (a, φ)dφ = 
1 

2π 

⎡ 

⎣ 
π∫

0 

V0dφ + 
2π∫

π 

0dφ 

⎤ 

⎦ = 
V0 

2 
(2.106)

Fig. 2.5 A graphical 
representation of a 
cylindrical object with radius 
a, where the upper half is 
maintained at a positive 
potential and the lower half 
is set to zero potential 
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cn = 
1 

π 

2π∫
0 

V (a, φ)dφ cos(nφ) 

cn = 
1 

π 

⎡ 

⎣ 
π∫

0 

cos(nφ)V0dφ + 
2π∫

π 

0 · sin(nφ)dφ 

⎤ 

⎦ 

cn = 0 (2.107) 

And 

dn = 
1 

π 

2π∫
0 

V (a, φ)dφ sin(nφ) 

dn = 
1 

π 

⎡ 

⎣ 
π∫

0 

sin(nφ)V0dφ + 
2π∫

π 

0 · sin(nφ)dφ 

⎤ 

⎦ 

dn = 
−V0 

nπ

(
(−1)n − 1

)

dn =
{ 2V0 

nπ ; if n is odd 
0; if n is even 

(2.108) 

Therefore, the electric potential outside the cylinder will be written as follows: 

V (a, φ) = 
V0 

2 
+ 

∞∑
n=1,3... 

(a/r)n 
2V0 

nπ 
cos(nφ) (2.109) 

The dominant term in the summation is when n = 1 

V (a, φ) ≈ 
V0 

2 
+ 

2V0a cos(φ) 
rπ 

(2.110) 

(b) To find V (a, φ) inside the cylinder, we can write: 

V (a, φ) ≈ 
V0 

2 
+ 

∞∑
n=1,3,.. 

(r/a)n 
2V0 

nπ 
sin(nφ) 

Dominant term is when n = 1 and is given by 

V (a, φ) ≈ 
V0 

2 
+ 

2V0r sin(φ) 
aπ 

(2.111) 

This is the procedure which is employed to get potential inside the cylinder.
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2.3 Uniqueness Theorems and Boundary Constraints 

The Laplace equation alone is insufficient to determine V explicitly, unless supplied 
by a suitable set of boundary conditions. Therefore, a question arises that what 
constitutes an appropriate set of boundary conditions that would help to determine 
V. In one dimensional case, we are usually confronted by just two constants in the 
general solution and therefore, we require only two boundary conditions. In this 
regard, we have several options for specifying boundary conditions: we can define 
the value of the function at both the ends, enumerate the value of the function and 
its derivative at one end, or we may fix the value of the function at one end and 
its derivative at the other. However, this information alone is rarely sufficient. It 
can be redundant if the conditions are identical, or inconsistent if they differ. In 
the case of two- and three-dimensional problems, we encounter partial differential 
equations, and identifying the correct boundary conditions is often a complex and 
tedious task. The adequacy of a proposed set of boundary conditions is typically 
established through a uniqueness theorem. In this discussion, we will focus on the 
two most crucial and widely applicable uniqueness theorems. 

2.3.1 First Uniqueness Theorem 

The solution to the Laplace equation within a specified region of volumeV is uniquely 
determined if appropriate boundary conditions are provided on the surface enclosing 
V . This principle is often formulated as the uniqueness theorem. In this context, we 
will explore the two most fundamental and useful versions of the theorem, which 
ensure that the solution to the Laplace equation is well-defined and singular under 
the given boundary constraints. These versions are critical in both theoretical and 
practical applications, as they guarantee that the solution does not depend on arbitrary 
or multiple possibilities when the boundary conditions are fixed (Fig. 2.6).

Proof We aim to demonstrate the uniqueness of the solution to the Poisson equation 
within a given volume V , subject to either Dirichlet or Neumann boundary conditions 
on the closed surface S. To approach this, we assume, for the sake of contradiction, 
that there exist two distinct solutions, V1 and V2, which both satisfy the same boundary 
conditions, i.e., 

∇2 V1 = 0 and ∇2 V2 = 0 

Let 

V3 = V2 − V1 

This will also obey Laplace equation
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Fig. 2.6 A region of volume encompassing a surface S

∇2 V3 = ∇2 V2 − ∇2 V1 

As already discussed, there is no local maxima and minima for potential 

∇2 V3 = ∇2 V2 − ∇2 V1 = 0 
V1 = V2 

That verifies first uniqueness theorem. The specific method used to obtain the 
solution is irrelevant, provided that: 

(a) It satisfies the equation ∇2V = 0 
(b) It adheres to the correct boundary conditions. 

Now, ∇2V1 = −  ρ 
ε0 
; ∇2V2 = −ρ 

ε0 

∇2 V3 = ∇2 V2 − ∇2 V1 = −  
ρ 
ε0 

+ 
ρ 
ε0 

= 0 

V3 = V2 − V1 = 0 
V1 = V2 

The potential in a volume V is uniquely determined if 

(a) Either the net charge density within the entire region is given or 
(b) Value of the potential V is specified on the boundaries.
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2.3.2 Second Uniqueness Theorem 

The simple procedure to obtain boundary conditions for the region of interest is to fix 
the potential V on all surfaces. However, there are situations where the potential at the 
boundary surface is unknown, but instead we are given charges on various conducting 
surfaces. Once a charge is placed on a conductor, it distributes itself according to 
certain rules. Therefore, it is more appropriate to enumerate the density of charge 
in a region between the conductors. Does this uniquely determine the electric field, 
or are there multiple ways by which the charges could arrange themselves on their 
respective conductors, each resulting in a different electric field? The electric field �E 
within a certain volume V , encompassed by conductors and possessing a specified 
charge density ρ, is distinctively governed if the total charge on each conductor is 
known. This region can either be enclosed by another conductor or extend unbounded. 

Proof The region between the conductors contains charge density ρ; therefore, we 
can apply Gauss’s law as follows:

�∇ · �E1 = 
ρ 
ε0 

; �∇ · �E2 = 
ρ 
ε0 

For ith conducting surface, we can write (Fig. 2.7)

∮
�E1 · d�a = 

Qi 

ε0 
;
∮

�E2 · d�a = 
Qi 

ε0 

Likewise, on the outer boundary we have charge = Qtotal

Fig. 2.7 Graphical representation of a conductor having charge density ρ 
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∮
�E1 · d�a = 

Qtotal 

ε0 
;
∮

�E2 · d�a = 
Qtotal 

ε0

�E3 = �E1 − �E2

�∇ · �E3 = �∇ · �E1 − �∇ · �E2 

= 
ρ 
ε0 

− 
ρ 
ε0 

= 0

�∇ · �E3 = 0∮
�E3 · d�a = 0 

However, the potential across the entire conductor is uniform. Therefore, every 
conducting surface is equipotential. Thus, we may write

�∇ ·
(
V3 �E3

)
= V3

( �∇ · �E3

)
+ �E3 ·

( �∇V3

)

= 0 + �E3 ·
(
−�E3

)

= −(E3)
2 

Integrating over volume

∮
τ

�∇ ·
(
V3 �E3

)
dτ =

∮
S 

V3 · �E3d�a 

= −
∮
τ 

(E3)
2 dτ 

where V3 is constant over the boundary 

0 = V3

∮
S

�E3 · d�a = −
∮
τ 

(E3)
2 dτ

∮
τ 

(E3)
2 dτ = 0 

The integrand is always non-negative, and the only possibility is E3 = 0

�E1 = �E2 

Example 2.5 Imagine a conducting spherical shell with an outer radius R, which is 
electrically grounded, meaning it is held at a constant potential of V = 0. Inside this 
shell, at its exact geometric centre, a point charge q is placed. Use the first uniqueness
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theorem to argue that the potential inside the shell is uniquely determined by these 
boundary conditions. 

Solution: 
The cylinder is grounded, therefore, V = 0 at  r = R, are the requisite boundary 

constraints. 
At the centre, the point charge q induces a singularity at r = 0, but we know that 

V (r) → 0 as  r → 0. 
Laplace’s Equation: Since there are no charges within the spherical shell (other 

than the point charge at the centre, which we’ll treat separately), Laplace’s equation 
is satisfied by the potential: 

∇2 V = 0 For  0  < r < R 

First Uniqueness Theorem: According to it, the solution of Laplace’s equation is 
uniquely determined if potential is fixed on the boundary (in this case, V = 0 at 
r = R). Since these conditions are met, the potential inside the shell is uniquely 
determined. 

Consider a point charge q located at the centre of a spherical shell that is electrically 
grounded, we know from symmetry that the potential must depend only on r, and 
for the region 0 < r < R, the solution becomes 

V (r) = q 

4πε0r 

Thus, the potential is uniquely specified based on the given boundary conditions 
and inherent symmetry. 

Example 2.6 A long grounded cylindrical conductor of radius R is placed along 
z-axis. Inside the cylinder, a line charge per unit length is placed at a distance a 
from the axis, where a < R. Use the second uniqueness theorem that electric field is 
uniquely determined by the boundary conditions. 

Solution: 

Boundary conditions: The cylinder is grounded, V = 0 at  r = R. 
The line charge λ creates symmetry and the potential V should reflect the 

cylindrical geometry. 
Poisson’s equation: In the region inside the cylinder where there is a line charge, 

Poisson’s equation governs the potential. 

∇2 V = −  
λ 
ε0 

δ(r − a)δ(θ − θ0) 

where r is the radial distance from the cylinder axis, and θ0 is the angular position 
of the line charge.
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Second Uniqueness Theorem: According to it, the solution of Poisson’s equa-
tion within a conductor is unique if the charge distribution and the potential on 
the boundary are specified. Here, the potential, V = 0 when, r  = R. The charge 
distribution is given by the line charge at r = a. By invoking the second unique-
ness theorem, we deduce that the electric field and potential inside the cylinder are 
uniquely determined by these boundary conditions. 

Unsolved Problems: 

Problem 2.1 Consider a spherical shell of radius R, with no charge inside. On the 
shell’s surface, the potential is expressed as 

V (R, θ  ) = V0 cos
2 θ 

where V0 is a constant. Find the potential V (r, θ  ) inside the shell for r < R? 
Ans. V (r, θ  ) = V0 

3 + V0 
3

(
r2 

R2

)(
3 cos2 θ − 1

)
. 

Problem 2.2 A conducting sphere of radius R possesses a surface charge distribution 
characterized by σ (θ ) = σ0 cos θ , where, σ0 is a constant. Determine the electric 
potential V (r, θ  ) in the region outside the sphere r > R due to this non-uniform 
surface charge distribution? 

Ans. V (r, θ  ) = σ0R2 

ε0r2 
cos θ . 

Problem 2.3 The potential due to a spherical shell of radius R is V (r, θ  ) = V0 cos θ 
on its surface, where, V0 is a constant. Find the electrostatic potential V (r, θ  ) inside 
the shell using azimuthal symmetry? 

Ans. V (r, θ  ) = V0 
R r cos θ . 

Problem 2.4 Find a charge distribution that would produce the Yukawa potential 
φ = q 

4πε0 

e−r /a 
r 

Ans. ρ = −  q 4π a2 
e−r/a 

r . 

Problem 2.5 A square sheet is charged uniformly with charge density σ . Show that 
the potential at the centre of the square is φ = σ a 

πε0 
ln(1 + √

2) , where a is the length 
of the side of the square. 

Problem 2.6 Consider a rectangular metal box with sides a, b and c along the x, y, 
and z axes, respectively. The box is grounded on three sides, while the fourth side 
(at x = a) is held on an electrical potential V (x = a, y, z) = V0(y, z). Show that the 
potential inside the box is uniquely determined using the first uniqueness theorem. 

Problem 2.7 In a coaxial cable the potential of the outer cylinder of radius b is 
maintained at zero and that of the inner cylinder of radius a is V1. Find the expression 
for the potential at a point in the region between two cylinders. 

Ans. V (r) = −  V1 
ln (b/a) ln (r/b).
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Problem 2.8 Solving Poisson’s equation ∇2φ = − ρ0 

ε0 
for the electrostatic potential 

φ(�x) in a region with charge density ρ0, two students find different solutions, viz. 
φ1(�x) = − 1 

2 
ρ0 

ε0 
x2 and φ2(�x) = − 1 

2 ρ0ε0y2. Discuss the reason why both of these 
different solutions are correct. 

Problem 2.9 A line charge of linear density λ is placed at a distance d above an 
infinite grounded conducting plane. Find the potential in the region above the plane. 

Ans. V (r) = λ 
2πε0 

ln
(
r1 
r2

)
. 

Problem 2.10 Consider an infinitely long cylinder of radius R, placed along the 
z-axis, which carries a static charge density ρ(�r) = kr, where r is the perpendicular 
distance from the axis of the cylinder and k is a constant. The electrostatic potential 

inside the cylinder is φ(�r)∝
(

r3 

R3 − 1
)
. 

2.4 Summary 

• The Laplace Equation: The Laplace equation ∇2V = 0 is emphasized as a core 
equation in electrostatics, widely applicable in electrodynamics for regions with 
no charge density. We explored its solutions in spherical coordinates. 

• Separation of Variables: The separation of variable technique is used to simplify 
the Laplace equation by breaking it into parts based on spherical coordinates, 
yielding solutions that depend on the radial, polar and azimuthal angles. 

• Legendre Polynomials and Azimuthal Symmetry: In this chapter we discuss the 
Legendre differential equation and Legendre polynomials, which arise naturally 
in problems with spherical symmetry. Rodrigue’s formula provides a systematic 
way to derive these polynomials. 

• Boundary Conditions in Spherical and Cylindrical Systems: We have studied 
the boundary conditions and their importance in determining potential: 

• Spherical Symmetry: Solutions involve finding potential inside or outside a 
spherical conductor with specific boundary conditions. 

• Cylindrical Symmetry: The Laplace equation in cylindrical coordinates, useful 
for systems with cylindrical geometries, like wires or pipes. Solutions often 
involve Bessel functions. 

• Application of Laplace’s Equation to Physical Problems: Several examples 
illustrate applying the Laplace equation in spherical and cylindrical systems, 
showing how to derive potential in systems with specified boundary values or 
symmetry. 

• Generating Function and Recursion Relations for Legendre Polynomials: The  
chapter provides methods for calculating Legendre polynomials systematically 
using generating functions and recursion relations, essential in boundary value 
problems involving spherical symmetry.
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• Electrostatic Potential for Specific Configurations: Examples include calcu-
lating potential inside or outside conductors with given boundary conditions (e.g., 
potential on a spherical shell or cylindrical conductor), reinforcing the application 
of these methods. 

• First Uniqueness Theorem: This theorem guarantees a unique solution to the 
Laplace equation if the potential on a boundary is known, ensuring that no arbitrary 
solutions exist. 

• Second Uniqueness Theorem: This theorem asserts that the electric field within 
a volume is uniquely determined if the charge distribution and conductor charges 
on the boundary are specified.



Chapter 3 
Boundary Value Problems-II 

Abstract This chapter presents a comprehensive exploration of methods and 
concepts in electrostatics and electrodynamics, focusing on three primary techniques: 
the separation of variables, the method of images and the Finite Element Analysis for 
two-dimensional cases. The method of images is introduced as a powerful tool for 
solving boundary problems by strategically placing imaginary charges outside the 
region of interest to satisfy boundary conditions. Detailed derivations are provided 
for the potential, electric field, surface charge density, Coulomb force and the work 
required to move charges in various configurations. A significant portion of the 
chapter is devoted to understanding the interaction between a point charge and 
a grounded conducting sphere. This analysis includes deriving the potential and 
force due to image charges, as well as examining special cases where the force 
approximates Coulomb’s law at short distances and deviates at long distances. The 
induced surface charge density on the sphere is also derived and analyzed for different 
angular positions. Further, the interaction between a point charge and an insulated 
conducting sphere is explored, incorporating the superposition principle to determine 
the resulting potential and forces. The behaviour of a conducting sphere in a uniform 
electric field is also examined, highlighting how image charges satisfy boundary 
conditions and how the induced surface charge density varies across the sphere’s 
surface. The chapter extends to advanced topics such as multipole expansion, which 
is used to describe the electric potential of complex charge distributions. This includes 
the monopole, dipole and quadrupole contributions, with particular emphasis on the 
behaviour of these potentials at large distances. The concept of vector potential is 
introduced, using multipole moments to analyze magnetic fields and the magnetic 
dipole moment, emphasizing its consistency with Maxwell’s equations. Theoret-
ical developments are complemented by applications that include the calculation of 
potentials, forces and surface charge densities for dipoles and quadrupoles, as well as 
the analysis of magnetic field configurations. To reinforce the concepts, the chapter 
includes solved examples and unsolved problems that encourage further exploration 
and practical application of the principles discussed. 

Keywords Potentials · Method of images · Multipole expansion · Boundary 
conditions
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3.1 Introduction 

The following three methods are generally employed to solve the Laplace or Poisson’s 
equations: 

(a) Method of Variable Separation 
(b) Method of Images 
(c) Finite Element Analysis (limited to 2D cases). 

The technique, separation of variables, has already been discussed in the previous 
chapter. In the present context, we will discern problems based on the method of 
images. 

The method of images addresses the challenge of handling one or more-point 
charges near boundary surfaces. When certain conditions are met, the geometry of 
the setup can suggest that a limited number of strategically placed charges, with 
carefully chosen magnitudes, can effectively replicate the requisite boundary values. 
These substitute charges are dubbed as image charges and such charges are utilized 
to discuss the original problem. The technique often referred as the method of 
images involves using imaginary or “mirror” charges in an extended region to satisfy 
boundary conditions in electrostatics. The image charges are generally positioned 
outside the domain of interest. In order to explain this, let us consider the example 
of potential on the plane (Fig. 3.1). 

V (�x) = Kq 

|�x − �x′| −
Kq 

|�x − �x′′| (3.1)

Fig. 3.1 Schematic representation of image charges 
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where �x′ represents the position of source charge q and �x′′ represents the locations 
of image charge − q. From this we can deduce the following quantities. 

(1) Electric Field: This is generally expressed as the negative gradient of the scalar 
potential V, and is therefore, mathematically written as follows

�E = −�∇V = −  
∂V 

∂n 
n̂ (3.2) 

(2) Charge Density: The surface charge density can be determined by taking the 
normal derivative of the potential V at the boundary surfaces. 

σ = −  
1 

4πK 

∂V 

∂n 
(3.3) 

(3) Coulomb Force: The interaction between a source charge and an image charge 
is defined as under 

F = 
Kq1q2 
r2 

= Kq2 /(2h)2 (3.4) 

(4) Work: The energy dissipated to get a charge at a localized position from infinity 
within a specific electric potential produced by a charge q, can be obtained as 
follows: 

W = qV (3.5) 

The above expression can be further simplified as follows: 

W = 
Kq2 

2h 
(3.6) 

3.2 Electrostatic Interaction of a Point Charge 
with a Grounded Conducting Sphere 

The conducting sphere implies that if any charge is kept on one point of the surface of 
the sphere, its effect will be perceived throughout the entire spherical surface. Here, 
q is the source charge and q′ is the image charge as shown in Fig 3.2.

Potential: The potential at point P may be expressed as: 

V (�x) = Kq 

|�x − �y| +
Kq′

|�x − �y′| (3.7)
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Fig. 3.2 Conducting sphere 
with radius ‘a’ possessing 
charge q produces an 
induced image charge q′. 
This arrangement guarantees 
the appropriate distribution 
of the electric field, fulfilling 
the necessary boundary 
values at the sphere’s surface

The potential on the surface of the sphere should vanish, i.e.; V (�x)|x=a = 0, which 
implies that 

Kq 

|�x − �y| = −  
Kq′

|�x − �y′| 
q′

q 
= −

∣
∣�x − �y′∣∣

|�x − �y|
(
q′

q

)2 

=
(

−
∣
∣�x − �y′∣∣

|�x − �y|

)2 

= �x.�x + �y′.�y′ − 2�x.�y′

�x.�x + �y.�y − 2�x.�y (3.8) 

The boundary value condition implies that V (�x)|x=a = 0

(
q′

q

)2 

× (

a2 + y2 − 2ay cos(θ )
) − (

a2 + y′2 − 2ay′ cos(θ )
) = 0 

Rearranging the terms in above equation, we get (Fig. 3.2)

[(
q′

q

)2 

(−2ay) + 2ay′
]

cos(θ ) +
(
q′

q

)2
(

a2 + y2
) − (

a2 + y′2) = 0 (3.9) 

From the above equation we can write,

(
q′

q

)2 

(−2ay) + 2ay′ = 0
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(
q′

q

)2 

= 
y′

y 

q′ = ±q 

√

y′

y 
(3.10) 

This represents the induced charge in terms of known charge. One root is signifi-
cant from the geometry, as physically q should be − q. From the 2nd term of Eq. (3.9), 
we can write

(
q′

q

)2
(

a2 + y2
) − (

a2 + y′2) = 0
(
y′

y

)
(

a2 + y2
) − (

a2 + y′2) = 0 

Multiply the above equation by y throughout, we get: 

y′(a2 + y2
) − y

(

a2 + y′2) = 0 

y′2 −
(
a2 + y2 

y

)

y′ + a2 = 0
(

y′ − 
a2 

y

)
(

y′ − y
) = 0 (3.11) 

which is quadratic equation in y′. This will yield either y′ = y, or y′ = a2 y . The first 
solution is of no use, however, from second solution, we can express y′ in guise of a 
and y, which implies q′ = −q a y and y

′ = a2 y . From this we can infer that we can fix 
the potential on the boundary by just adjusting y. Furthermore, we can conclude that 
the charges reside on the surface and there are no electric charges present within its 
interior. 

Force of Interaction: The interaction between charges q and q′ is enumerated as 
follows: 

F = Kqq′

(y − y′)2
(3.12) 

F = 
−Kq2 a y

(

y − a2 y
)2 = 

K
(−q2 

a2

)

( y 
a

)3
(

1 − a2 y2

)2 

F = − K q
2 

a2

( y 
a

)3
(

1 − a2 y2

)2 (3.13)
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We will discuss some special cases as follows: 

(a) Short Distance: In this case y ≈ a, and from Eq. (3.13) we can write 

F ≈ −Kq2 

a2

(

1 − 
a2 

y2

)−2 

Using binomial expansion (1 − x)n ≈ 1− nx; where we have neglected high 
order terms 

F ≈ −  
Kq2 

a2

(

1 + 
2a2 

y2

)

≈ 
1 

y2 
(3.14) 

The above equation resembles with the Coulomb’s law. 
(b) Long Distance: In this case y � a, and from Eq. (3.13), we obtain 

F ≈ −  
Kq2 

a2 
a3 

y3 
(3.15) 

For considerable distances between charges, the force diminishes in propor-
tion to the cube of the separation. This principle reflects the modified form of 
Coulomb’s law, i.e., Coulomb’s law is not true when we go very far away, it is 
not a universal law. 

Induced Surface Charge Density 

It has been previously mentioned that the induced surface charge density can be deter-
mined by calculating the normal derivative of the potential at that surface. Therefore, 
from Eq. (3.7) we get 

σ = −  
1 

4πK 

∂V 

∂x

∣
∣
∣
∣
x=a 

σ = −  
1 

4πK 

∂ 
∂x

(

Kq
(

x2 + y2 − 2xyCos(θ )
)1/2 +

Kq′
(

x2 + y′2 − 2xy′ cos(θ )
)1/2

)

x=a 

At x = a, that is on the surface of the sphere 

σ = 
1 

4π

(

1 

2 

q(2a − 2y cos(θ ))
(

a2 + y2 − 2ay cos(θ )
)3/2 + 

1 

2 

q′(2a − 2y′ cos(θ )
)

(

a2 + y′2 − 2ay′ cos(θ )
)3/2

)

Using, q′ = −q a y , y
′ = a2 y , in the above equation, we get
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σ = 
1 

4π 

⎛ 

⎜ 
⎝ 

q(a − y cos(θ ))
(

a2 + y2 − 2ay cos(θ )
)3/2 + 

−q a y

(

a − a2 y cos(θ )
)

(

a2 + a4 y2 − 2a a2 y cos(θ )
)3/2 

⎞ 

⎟ 
⎠ 

σ = 
1 

4π 

⎛ 

⎜ 
⎝ 

q(a − y cos(θ )) 

y3
(
a2 
y2 + 1 − 2 a y cos(θ )

)3/2 − 
q
(

a − a2 y cos(θ )
)

a2y
(

1 + a2 y2 − 2 a y cos(θ )
)3/2 

⎞ 

⎟ 
⎠ 

σ = 
1 

4π 
q

(

1 + a2 y2 − 2 a y cos(θ )
)3/2 ×

(
1 

y3 
(a − yCos(θ )) − 

1 

a2y

(

a − 
a2 

y 
cos(θ )

))

σ = 
q 

4π 
1

(

1 + a2 y2 − 2 a y cos(θ )
)3/2 ×

(
a 

y3 
− 

1 

ay

)

The above equation can be simplified as under: 

σ = −  
q 

4πa2

(
a 

y

)
(

1 − a2 y2

)

(

1 + a2 y2 − 2 a y cos(θ )
)3/2 (3.16) 

The quantity q 
4π a2 in the above equation has the dimensions of surface charge 

density. Therefore, we can say that the quantity σ represents the normalized surface 
charge density. The dimensionless quantities, viz.; a y and 

y 
a are called generators. 

However, the quantity, y a exhibits how far we have moved from the surface of the 
sphere. 

For example, if y a = 2, i.e., y = 2a, that means we are going far way two times 
the radius of the sphere, similarly, if y a = 4, i.e., y = 4a, that means we are going 
far way four times the radius of the sphere here we define σ ′ = q 

4π a2 

σ = −σ ′
(
a 

y

)
(

1 − a2 y2

)

(

1 + a2 y2 − 2 a y cos(θ )
)3/2 (3.17) 

From the above expression we are going to deduce some of the elegant phys-
ical concepts. As we know that θ is a dimensionless quantity, σ should also 
be dimensionless quantity. We will plot graph between these two dimensionless 
quantities. 

For example, 

y = 2a
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− 
4πa2σ 

q 
= 

1 

2 

3/4
(
5 
4 − cos(θ )

)3/2 (3.18) 

For θ = 00 

− 
4πa2σ 

q 
= 3 

For θ = π 
2 

− 
4πa2σ 

q 
= 0.4 

For θ = π 

− 
4πa2σ 

q
= 0.1 

From the above discussion, it is evident that asθ increases from 0 to π 
2 , the  

normal charge density decreases rapidly; however, it decreases further slowly with 
the increase in θ . It looks like we are moving away from the point where surface 
charge density due to q′ decreases by changing the angle θ (Fig. 3.3). 

Fig. 3.3 The schematic representation of surface charge density of a conducting sphere having 
radius ‘a’’ generated due to the presence of a point charge situated at a distance y from the sphere’s 
centre. Note that the scale in the graph is not precisely accurate and is for illustrative purposes only
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3.3 Point Charge (q) Near a Charged (Q) Insulated 
Conducting Sphere 

As discussed in the previous section, we are aware of the fact that the image charges 
inhabit the surface of a conductor. But for practical purposes, we assume it to be 
concentrated at the origin of a sphere. Since, we have proved in case of a point 
charge q near a grounded sphere, the induced charge on the surface of a sphere is 
given by q′ = −q a y . 

In addition, let us examine an insulated conducting sphere that possesses a total 
charge Q in presence of a point charge q. We can approach the potential func-
tion for this scenario using the principle of linear superposition. First, we define 
the conducting sphere as being grounded, with a charge q′ distributed uniformly 
throughout its entire surface. After grounding the sphere, we disconnect the ground 
wire and add an additional charge of (Q − q′) to the sphere. For the sake of simplicity, 
we will assume this additional charge is also uniformly distributed over the surface 
of the insulated conducting sphere. It is important to note that the electrostatic forces 
exerted by the point charge q are counterbalanced by the charge q′ on the sphere 
(Fig. 3.4). 

Let 

q′′ = Q − q′(total charge q′′ + q′) (3.19) 

q′′ = Q + q 
a 

y 
(3.20) 

We also know that y′ = a2 y .

Fig. 3.4 A point charge 
q near an insulated 
conducting sphere of charge 
Q 
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Potential 

The electric potential at an arbitrary point x, located outside the sphere, is influenced 
by the charges q, q′, and q′′ is, therefore, according to the superposition principle 

V (�x) = Kq 

|�x − �y| +
Kq′

|�x − �y′| + 
q′′

|�x| 

V (�x) = K 

⎛ 

⎝
q 

|�x − �y| −
q a y

∣
∣
∣�x − a2 y2 �y

∣
∣
∣

+ 
Q + q a y 

|�x| 

⎞ 

⎠ (3.21) 

This is the potential due to three charges. It differs from the previous case by the 
fact that the sphere under consideration is not grounded, however, it is insulated and, 
therefore, the charges does not flow anywhere. The additional surface charge density 
is contributed by the charge q′′ and is equal to q′′

4π a2 . Therefore, the total surface 
charge density is given by 

σ = q 

4πa2

(
a 
y

)(
a2 

y2 − 1
)

(

1 + a2 y2 − 2 a y cos(θ )
)3/2 + 

Q + q a y 
4πa2 

(3.22) 

Force of Interaction: The interaction experienced by charge q due to the presence 
of charges q′ and q′′ is expressed by the following equation 

Fq = 
Kqq′′

y2 
+ Kqq′

|�y − �y′|2

�Fq = K 

⎛ 

⎜ 
⎝ 
q
(

Q + q a y
)

y2
− q

(

q a y

)

(

y − a2 y
)2 

⎞ 

⎟ 
⎠

�y 
y

�Fq = 
Kq 

y2 

⎛ 

⎜ 
⎝

(

Q + q 
a 

y

)

−
(

q a y

)

(

1 − a2 y2

)2 

⎞ 

⎟ 
⎠

�y 
y 

(3.23) 

which can be simplified as follows:

�Fq = 
Kq 

y2 

⎛ 

⎜ 
⎝Q − 

q
(
a 
y

)3(

2 − a2 y2

)

(

1 − a2 y2

)2 

⎞ 

⎟ 
⎠

�y 
y 

(3.24)
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We will discuss some of the special cases as follows: 

(a) Long Distance: y � a. 
The expression for force reduces as 

−→
F q = 

Kq 

y2 
Q

�y 
y 

(3.25) 

This is similar to the conventional Coulomb’s law applied to two small 
charged particles. However, the force is altered due to the influence of the 
induced charge distribution present on the surface of a sphere. 

(b) Short Distance: y ≈ a, then the Eq. (3.24) reduces to

�Fq = 
Kq 

y2

(

Q − q − 2q′ a 
y

)

(3.26) 

However, −q − 2q′ a 
y � Q. As a result, Fq ∝ 1 

y2 and it is important to note 
here that the force becomes attractive at very close distances. 

This problem explains a general property that why an excess surface charge 
does not immediately move on account of mutual repulsion of individual 
charges. The moment the element of surface charge is removed, the image 
charge pulls it back. However, it requires an ample work that is to be done in 
order to move the surface charge to infinity. 

3.4 Influence of a Uniform Electric Field on Conducting 
Sphere 

Let us envisage a conducting sphere with a radius ‘a’ immersed in a uniform electric 
field. This uniform field can be thought of as originating from a pair of charges—one 
positive and one negative positioned infinitely far away. To facilitate our under-
standing, let us place charges of magnitude + Q at Z = −  R and − Q at Z = + R, 
as illustrated in the accompanying diagram. This configuration allows us to analyze 
the influence of these charges on the electric field experienced at a specific point, 
denoted as o. The resulting electric field at point o can be described mathematically 
as follows: 

E = 
KQ 

R2 
+ 

KQ 

R2 
= 2 

KQ 

R2 
(3.27) 

As E → E0; Q → ∞, R → ∞  implies that E0 → 2 KQ R2 . 
We now assume that the conducting sphere is placed at the origin and, therefore, 

the potential will be due to the charges ± Q located at positions Z = ∓ R and their 
images q1 = −Qa 

R at z = −a2 

R and q1 = Qa R at Z = +a2 

R and OP = r (Fig. 3.5).
Therefore, the net potential is due to charges Q, − Q, q1, and q2
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Fig. 3.5 Analysis of a 
conducting sphere placed in 
a uniform electric field using 
the method of image charges

V (�r) = K

(

Q
∣
∣�r − �rQ

∣
∣

+ q
∣
∣�r − �rq1

∣
∣

+ q
∣
∣�r − �rq2

∣
∣

+ 
−Q

∣
∣�r − �rQ

∣
∣

)

(3.28) 

Or we can write it as follows: 

V (�r) 
K 

= Q
∣
∣
∣�r + �R

∣
∣
∣

− 
Q

∣
∣
∣�r − �R

∣
∣
∣

+ 
−Qa 
R

∣
∣
∣�r + a2 R

∣
∣
∣

+ 
Qa 
R

∣
∣
∣�r − a2 R

∣
∣
∣

V (�r) 
K 

= Q
(

r2 + R2 + 2rR cos(θ )
)1/2 +

−Q
(

r2 + R2 − 2rR cos(θ )
)1/2 

+ −Q a R
(

r2 + a4 R2 + 2r a2 R cos(θ )
)1/2 +

Q a R
(

r2 + a4 R2 − 2r a2 R cos(θ )
)1/2 (3.29) 

The variable V has been represented using the spherical coordinates of the obser-
vation point. Additionally, in the first two terms of the equation mentioned above, 
the condition r � R holds true. We, therefore, factor out R2 and expand the radicals 
by Binomial Theorem. In a similar manner, for the third and fourth terms, we can 
factor out r2 and upon expanding, we obtain

(

r2 + R2 + 2rR cos(θ )
)−1/2 = R−1

(

1 + 
r2 

R2 
+ 

2r 

R 
cos(θ )

)−1/2 

(3.30)

(

r2 + R2 + 2rR cos(θ )
)−1/2 = R−1

(

1 − 
1 

2 

r2 

R2 
− 

r 

R 
cos(θ ) −  · · ·

)

and

(

r2 + 
a4 

R2 
+ 2r 

a2 

R 
cos(θ )

)−1/2 

= r−1

(

1 + 
a4 

R2r2 
+ 2 

a2 

rR 
cos(θ )

)−1/2
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= r−1

(

1 − a4 

2R2r2 
− 

a2 

rR 
cos(θ ) −  · · ·

)

(3.31) 

(since a r and 
a 
R are less than 1). Therefore, on substuting Eqs. (3.30) and (3.31) in  

Eq. (3.29), we get 

V (�r) 
K 

= 
Q 

R

(

1 − 
r2 

2R2 − 
r 

R 
cos(θ ) +  · · ·

)

− 
Q 

R

(

1 − 
r2 

2R2 + 
r 

R 
cos(θ ) +  · · ·

)

− 
Qa 

Rr

(

1 − a4 

2R2r2 
− 

a2 

rR 
cos(θ ) +  · · ·

)

+ 
Qa 

Rr

(

1 − a4 

2R2r2 
+ 

a2 

rR 
cos(θ ) +  · · ·

)

= 
Q 

R

(

−2 
r 

R 
cos(θ ) +  · · ·

)

+ 
Qa 

Rr

(

2 
a2 

Rr 
cos(θ ) +  · · ·

)

(3.32) 

as Q → ∞  and R → ∞  implies Q R2 → 0. Under these approximations the above 
expression for potential assumes the following form: 

V (�r) = 
−2KQ 

R2

(

r − 
a3 

r2

)

cos(θ ) (3.33) 

In the aforementioned equation, the component −�E0.�r signifies the potential 
generated by a uniform electric field. Conversely, the term E0 

a3 

r2 cos(θ ) corresponds 
to the potential created by the induced surface charge density, which can also be 
understood in terms of the influence of image charges. 

Induced Charge: The induced surface charge density is calculated as follows: 

σ = 
−1 

4πK 

∂V 

∂r

∣
∣
∣
∣
r=a 

σ = −  
1 

4π K

(

−E0

(

1 + 
2a3 

r3

)

cos(θ )
)

r=a 

σ = 
E0 

4πK 
(1 + 2) cos(θ ) = 

3E0 

4πK 
cos(θ ) (3.34) 

It is important to mention here that the surface integral of this expression vanishes 
and hence there is no difference between grounded and an insulated sphere. 

Example 3.1 A conducting sphere of radius R is placed in a uniform electric field
�E0 directed along + z-axis. The electric potential for outside points is given as 
V = −E0

(

1 − R3 

r3

)

r cos θ , where r is the distance from the centre and θ is the polar 
angle. Calculate the charge density on the surface of the sphere.
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Solution: 

Since, 

V = −E0

(

1 − 
R3 

r3

)

r cos θ 

The charge density is related to �E0 by a relation 

E = 
σ

ε 0 

Further,

�E = −�∇V 

σ = −ε0 
∂v 

∂r 
|r=R = 3ε0E0 cos θ 

Example 3.2 An electric dipole with dipole moment �p is located at a separation d 
above an infinite grounded conducting plane. Determine the potential and force on 
the dipole. 

Solution: 

The image dipole p′ = p is located at z = −d . 

The potential due to both dipoles is V (z) = 1 
4πε0

( �p.ẑ 
(z−d )2 

+ −�p·ẑ 
(z+d )2

)

V (z) = �p · ẑ 
4πε0

(
1 

(z − d)2 
− 1 

(z + d)2

)

The force on the dipole is �F = −�∇V 

∂V 

∂z 
= �p · ẑ 

4πε0

(

− 2 

(z − d )3 
+ 2 

(z + d)3

)

F = 2
( �p · ẑ 
4πε0

(
1 

(z − d )3 
− 1 

(z + d )3

))

Example 3.3 The region between two concentric right circular cylinders contains a 
uniform charge density ρ. Calculate the potentialis V.
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Solution: 

Using the Poisson’s equation 

1 

r 

d 

dr

(

r 
dV 

dr

)

= −  
ρ

ε

d 

dr

(

r 
dV 

dr

)

= −  
ρr

ε

Integrating, we get 

r 
dV 

dr 
= −ρr2 

2ε
+ A 

dV 

dr 
= −  

ρr 

2ε
+ 

A 

r 

Again integrating, we obtain 

V = 
ρr2 

4ε
+ Aln(r) + B 

Example 3.4 Two equal point charges +q and −q are placed at a distance d apart, at 
a distance h from an infinite grounded conducting wall. Find the potential and force. 

Solution: 

We can place − q at z = −h. 
The potential is V (r) = q 

4πε0r+ 
− q 

4πε0r− 
. 

where r+ =
√

(x − x1)2 + (y − y1)2 + (z − h)2 . 

and r− =
√

(x − x1)2 + (y − y1)2 + (z + h)2 . 
The force on charge + q is

�F = −�∇V 

Fx = −  
∂V 

∂x 
, 

Fy = −  
∂V 

∂y 
;Fz = −  

∂V 

∂z 

Example 3.5 Find the energy stored in a uniformly charged solid sphere of radius 
R and charge. 

Solution:

�E = 1 
4πε0R3 

qr 
R3 r̂, r > R and �E = 1 

4πε0r2 
q 
r2 r̂, r < R
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W = ε2 

2 

q2 

(4πε0)2 

⎧ 
⎨ 

⎩ 

∞∫

R 

1 

r4 
(r2 4πdr) + 

R∫

0

( r 

R3

)2 
(r2 4πdr) 

⎫ 
⎬ 

⎭ 

W = 1 

4πε0 

3q2 

5R 

Example 3.6 A charge q = 4 µC is positioned at 8 cm away from the centre of a 
conducting grounded sphere of radius a = 3 cm. Calculate the electrostatic force 
between the charge and the image charge. 

Solution: 

We know that image charge is given by 

q′ = −q 
a 

y 
= −4 × 10−6 3 

8 
= −1.5 µC 

The position y′ of charge q′ is 

y′ = 
a2 

y 
= 

32 

8 
= 1.125 cm 

The distance between q and q′ is given by 

r = y − y′ = 8 − 1.125 = 6.875 cm = 0.06875 m. 

The force between q and q′ is 

F = 
Kq1q2 
r2 

= 
9 × 109 × 4 × 10−6 × 1.5 × 10−6 

(0.06875)2
= 11.42 N 

Example 3.7 Calculate the work required to bring a 3 µC point charge from infinity 
to a point 7 cm from the centre of conducting grounded sphere of radius 3 cm. 

Solution: 

The image charge q′ = −q a y = −3 × 10−6 3 
7 = −1.29 µC. 

Image position y′ = a2 y = 32 7 = 1.29 cm. 
The potential energy at a distance y = 7 cm  

W = 
Kqq′

y − y′ ≈ 0.61 J 

Example 3.8 A point charge q = 2 µC is placed 8 cm away from the centre of 
an insulated conducting sphere with radius a = 3 cm  and total charge Q = 5 µC.



3.4 Influence of a Uniform Electric Field on Conducting Sphere 109

Calculate the electric potential at a point P located 12 cm from the centre of the 
sphere, along the line joining the charge q and the centre of the sphere. 

Solution: 

Image charge q′ = −q a y = −2 × 10−6 3 
8 = −0.75 µC. 

Image position y′ = a2 y = 1.125 cm. 
The effective charge q′′ on the sphere due to the presence of Q and q′

q′′ = Q + q 
a 

y 
= 5.75 µC 

The total potential at point P due to q, q′ and q′′ is 

V (P) = 9 × 109
(
2 × 10−6 

0.4 
+ 

−0.75 × 10−6 

0.10875 
+ 

5.75 × 10−6 

0.12

)

= 819180 V 

Example 3.9 A conducting sphere of radius a = 4 cm  is placed in uniform electric 
field �E0 = 3 × 105 V/m. Calculate the induced surface charge density σ at points on 
the sphere’s surfaces at angles θ = 00, θ  = 450 and θ = 900. 

Solution: 

The induced surface charge density on a conducting sphere in a uniform electric field 
is given by 

σ = 
3E0 

4πK 
Cosθ 

For different θ , σ is given by 
For θ = 00 

σ = 
3 × 3 × 105 

4π × 9 × 109 
× 1 = 7.96 × 10−6 C/m2 

For θ = 450 

σ = 
3 × 3 × 105 

4π × 9 × 109 
× Cos450 = 5.63 × 10−6 C/m2 

For θ = 900 

σ = 
3 × 3 × 105 

4π × 9 × 109 
× Cos900 = 0C/m2
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Example 3.10 Given a conducting sphere of radius a = 5 cm  in a uniform electric 
field E0 = 2× 105 V/m. Calculate the potential at a point P located r = 15 cm from 
the centre of sphere along the direction of electric field. 

Solution: 

The potential outside the sphere at a distance r along the direction of the electric 
field is given by 

V (r) = −E0r cos θ + E0 
a3 

r2 
cos θ 

Here, θ = 00, E0 = 2 × 105 V/m, r = 15 cm = 0.15 m and a = 5cm = 0.05m 

V (r) = −28888.89 V 

3.5 Potential Due to Dipole 

It is observed that potential becomes zero either when r → ∞  or Q → 0. However, 
potential due to dipole is non-zero even if Q = 0. Consider a dipole as show below 
(Fig. 3.6). 

Since potential obeys superposition principle, therefore, potential at point P is 
given by

Fig. 3.6 Schematic 
representation of an electric 
dipole 
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V (�r) = 1 

4πε0

(
q 

r+ 
− 

q 

r−

)

(3.35) 

From the law of cosine, we can write 

r2 ± = r2 +
(
d 

2

)2 

∓ rd cos(θ ) 

r2 ± = r2
(

1 ∓ 
d 

r 
cos(θ ) + 

d2 

4r2

)

In the regime r � d , i.e., the observation point is far off from the dipole 

r± ∼= r
(

1 ∓ 
d 

r 
cos(θ )

)1/2 

1 

r± 
∼= 

1 

r

(

1 ∓ 
d 

r 
cos(θ )

)−1/2 

1 

r± 
∼= 

1 

r

(

1 ± 
d 

2r 
cos(θ )

)

Thus, 

1 

r+ 
− 

1 

r− 
∼= 

d 

r2 
cos(θ ) (3.36) 

Hence, electric potential due to an electric dipole is written as follows: 

V (�r) ∼= 1 

4πε0 

qd 

r2 
cos(θ ) (3.37) 

We know that potential due to the point charge V (�r) ∝ 1 
r , here we found that 

potential due to the dipole as V (�r) ∝ 1 
r2 . This motivates us to expand 1 r by binominal 

expansion. 

3.6 Expansion of Multipole Moments 

Let us examine the charge distribution depicted in the illustration. Our goal is to 
determine the electric potential at point P (Fig. 3.7).

Therefore, the potential at point P can be written explicitly as follows:

V (�r) = 
1 

4πε0 
∫ 
1 

R 
ρ
(�r′)dτ ′
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Fig. 3.7 Diagrammatic 
representation of certain 
charge distribution in a 
region

R2 = r2 + r′2 − 2rr′ cos(α) 

R2 = r2
(

1 +
(
r′

r

)(
r′

r 
− 2 cos(α)

))

(3.38)

We can write the expression as 

R = r 
√
1 + ε (3.39) 

where

ε =
(
r′

r

)(
r′

r 
− 2 cos(α)

)

(3.40) 

If ε <  1, we get from Eq. (3.39) after expansion 

1 

R 
= 

1 

r 
(1 + ε)−1/2 

1 

R 
= 

1 

r

(

1 − 
1 

2
ε + 

3 

8
ε2 − 

5 

16
ε3 +  · · ·

)

Substitute value of ε in the equation, we obtain 

1 

R 
= 

1 

r

(

1 − 
1 

2

(
r′

r

)(
r′

r 
− 2 cos(α)

)

+ 
3 

8

(
r′

r

)2( r′

r 
− 2 cos(α)

)2 

− 
5 

16

(
r′

r

)3( r′

r 
− 2 cos(α)

)3 

+  · · ·
)
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1 

R 
= 

1 

r

[

1 − 
1 

2

(
r′

r

)2 

+
(
r′

r

)

cos(α) + 
3 

8

(
r′

r

)2

((
r′

r

)2 

+ 4 cos2 (α) −
(
r′

r

)

4 cos(α)

)

− 
5 

16

(
r′

r

)3

((
r′

r

)3 

− 6
(
r′

r

)2 

cos(α) + 12
(
r′

r

)

cos2 (α) − 8 cos3 (α)

)

+  · · ·
]

1 

R 
= 

1 

r

[

1 +
(
r′

r

)

cos(α) +
(
r′

r

)2 (3 cos2(α) − 1
)

2 

+
(
r′

r

)3 (5 cos2(α) − cos(α)
)

2
+ . . .

]

Coefficients of
(
r′
r

)

are Legendre polynomials 

1 

R 
= 

1 

r 

∞
∑

n=0

(
r′

r

)n 

Pn(cos(α)) (3.41) 

We know that P0(cos(α)) = 1; P1(cos(α)) = cos(α). 
Hence, expression for potential becomes 

V (�r) = 1 

4πε0 

∞
∑

n=0 

1 

rn+1 
∫(r′)n Pn cos(α)ρ

(�r′)dτ ′ (3.42) 

Figure 3.8 likely illustrates the geometric relationship between the vectors �r, �r′, and 
the angle α. It may also show how the angle α influences the contributions of the 
monopole, dipole, quadrupole and higher-order terms to the potential V (�r). 

Fig. 3.8 Representation of radial vectors r and r/
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Fig. 3.9 Charge configurations representing monopole, dipole, quadrupole, and octopole arrange-
ments, showing increasing spatial complexity and multipole order 

This expression can be explicitly written as under 

V (�r) = 
1 

4πε0

[
1 

r 
∫ ρ

(�r′)dτ ′ + 
1 

r2 
∫ r′ cos(α)ρ

(�r′)dτ ′

+ 
1 

r3 
∫(r′)2

(

3 cos2(α) − 1
)

2 
ρ
(�r′)dτ ′ +  · · ·

]

which represents the multipole expansion. The first term on R.H.S represents 
monopole term, the second term represents the dipole term and so on (Fig. 3.9) 

V (�r) = Monopole + Dipole + Qudrupole + Octapole +  · · ·  

The Monopole and Dipole Terms: Dominating term at large �r 

VMon.(�r) = 1 

4πε0 

Q 

r 
(3.43) 

where 

Q = ∫ ρ
(�r′)dτ ′

VMon.(�r) is the exact potential for point charge. However, if the total charge is zero 
the dominant term is 

VDip.(�r) = 1 

4πε0 

1 

r2 
∫ r′ cos(α)ρ

(�r′)dτ ′ (3.44) 

So, we can write r′ cos(α) = r̂ · �r′. Therefore VDip.(�r) can be written as: 

VDip.(�r) = 1 

4πε0 

1 

r2 
r̂ · ∫ �r′ρ

(�r′)dτ ′ (3.45) 

Here, we define dipole moment
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Fig. 3.10 Comparison of electric field lines of a pure dipole (idealized point dipole) and a phys-
ical dipole (finite separation between charges). The pure dipole field (left) exhibits perfect radial 
symmetry, while the physical dipole field (right) reflects the finite spatial extent of the charge 
separation

�P = ∫ �r′ρ
(�r′)d τ ′ (3.46) 

This is the dipole moment of the exact dipole or ideal dipole (d → 0). 
Therefore, we can write 

VDip.(�r) = 
1 

4πε0

�P · r̂ 
r2 

(3.47) 

The dipole moment is governed by the geometry of charge distribution for 
collection of charges �P = ∑n 

i=1 qi�r′
i (Fig. 3.10). 

For Physical Dipole: For a physical dipole consisting of two equal and opposite 
charges separated by a small distance, the dipole moment is defined as

�P = q�r′
+ − q�r′

− 

For small separations, this simplifies to

�P = q�d (3.48) 

Where �d is the displacement vector from the negative charge to the positive charge. 
This Eq.(3.48) represents the fundamental definition of a physical dipole moment.
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3.7 Expanding the Vector Potential Using Multipole 
Moments 

We can derive an approximate expression for the vector potential of a localized 
charge distribution at any given point by utilizing a multipole expansion technique. 
The idea here is to make a power series expansion in 1 r , where r is the distance to 
the observation point. 

When, r is large enough, the series will primarily be influenced by the smallest 
non-zero terms and the higher terms can be ignored. 

1 

R 
= 1 

√

r2 + r′2 − 2rr′ cos(α) 
= 

1 

r 

∞
∑

n=0

(
r′

r

)n 

Pn(cos(α)) (3.49) 

where α is the angle between �r and �r′. Accordingly, the vector potential of a current 
loop can be written:

�A(�r) = 
μ0I 

4π 
∫ 
1 

R 

−→
dl = 

μ0I 

4π 

∞
∑

n=0 

1 

rn+1 
∫(r′)n Pn cos(α)ρ

(�r′)−→dl ′ (3.50) 

More explicitly we can write above equation as follows (Fig. 3.11):

�A(�r) = 
μ0I 

4π

[
1 

r

∮ −→
dl ′ + 

1 

r2

∮

r′ cos(α)
−→
dl ′ + 

1 

r3

∮
(

r′
)2
(
3 

2 
cos2 α − 

1 

2

)−→
dl ′ +  · · ·

]

(3.51) 

When r is extremely large, the expansion will primarily be influenced by the 
smallest non-zero contributions. From the notion of multipole expansion of potential 
V, we deduce that the first term behaves like 1 r (the monopole term), the second term 
behaves like 1 r2 (the dipole term), the third term behaves like 1 r3 (the quadrupole term) 
and so on and so forth. Notably, the magnetic term is always zero, as the integral 

represents the total vector displacement around a closed loop, specifically
∮ −→
dl ′ = 0.

Fig. 3.11 Schematic 
representation for multipole 
expansion of moments 
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This indicates the absence of magnetic monopoles in nature, which aligns with the 
assumption in Maxwell’s equations, where �∇ · �B = 0. Consequently, the dominant 
term in this context is the dipole term.

�A(�r)Dipole = 
μ0I 

4π 
1 

r2

∮

r′ cos(α)
−→
dl ′ = 

μ0I 

4πr2

∮

r̂ · �r′−→dl ′ (3.52) 

The integral in the above equation can be written as:

∮

r̂ · �r′−→dl ′ = −r̂ × ∫ d�a

�A(�r)Dipole = 
μ0I 

4πr2 
∫ d�a × r̂

�A(�r)Dipole = 
μ0 

4π

�m × r̂ 
r2 

(3.53) 

The magnetic moment, denoted �m, is given by �m = I ∫ d�a = I �a where I is the 
current, and �a represents the vector area of the loop through which the current flows. 
When the loop lies flat, �a simplifies to the standard scalar area enclosed by the loop, 
with its direction determined by the right-hand rule pointing along the axis that aligns 
with the current’s circulation. 

From Eq. (3.53), we observe that the magnetic dipole moment is unaffected by 
the location of the origin. This contrasts with the electric dipole moment, which is 
origin-independent only in cases where the system has a net-zero charge. Given that 
magnetic monopoles are not observed (i.e., the magnetic monopole moment is zero), 
it follows naturally that the magnetic dipole moment is consistently independent of 
the origin. Additionally, the magnetic dipole term tends to be the leading term in a 
multipole expansion (unless m = 0), making it a reliable approximation for the true 
potential field in most practical cases. 

The magnetic field of an ideal dipole configuration is most easily calculated 
by placing �m at the origin and orienting it along the z-axis. Under these condi-
tions, the potential at a point (r, θ,  φ) in spherical coordinates can be derived for a 
straightforward analysis. 

In line with Maxwell’s equation, �∇.�B = 0 which is a foundational principle of 
vector potential theory, the magnetic dipole term becomes the primary component 
in field approximations, as higher-order terms contribute minimally under typical 
circumstances (Fig. 3.12).

The vector potential at point (r, θ,  φ) is

�A(�r)Dipole = 
μ0 

4π 
m sin(θ ) 

r2 
φ̂ (3.54) 

Hence, the magnetic field can be written as

�B = �∇ × �A
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Fig. 3.12 A magnetic dipole 
aligned along Z-axis

�B = 
μ0m 

4π

(

2 cos(θ )r̂ + sin(θ ) ̂θ
)

(3.55)

This equation is reminiscent to the field of an electric dipole. 

Example 3.11 A conducting sphere of radius a = 2cm is placed in a uniform electric 
field E0 = 1.5× 105V/m. Determine the force on the induced dipole moment of the 
sphere due to the external field. 

Solution: 

The induced dipole moment p of a conducting sphere in an external field E0 is given 
as follows: 

p = 4πε0a
3 E0 

We know that

ε0 = 8.85 × 1012 C2 /Nm2 

a = 2 cm  = 0.02 m 

E0 = 1.5 × 105 V/m 

p ≈ 1.33 × 10−10 C2 V /N 

The force F on the induced dipole moment p in the uniform electric field E0 is 
given by 

F = �P · �∇E0 

Since, E0 is uniform hence the force F = 0 .
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Example 3.12 A conducting sphere of radius a = 3 cm  is placed in a uniform electric 
field E0 = 4 × 105 V/m. Calculate the work done to remove the sphere from the 
electric field. 

Solution: 

The dipole moment p, induced by the sphere in presence of electric field E0 is 

p = 4πε0a
3 E0

ε0 = 8.85 × 1012 C2 /Nm2 

a = 3 cm  = 0.03 m 

E0 = 4 × 105 V/m 

p ≈ 12.0 × 10−10 C2 V /N 

The potential energy U of the dipole in the electric field E0 is 

U = −pE0 = −4.8 × 10−4 J 

The necessary work done to remove the sphere from the electric field is W = 
−U = 4.8 × 10−4J. 

Example 3.13 A dipole with charges ±q = 1 × 106 C separated by a distance 
d = 2 × 10−2 m is oriented along z-axis. Determine the electric potential V at points 
located at. 

r = 0.1m, θ  = 00 

r = 0.1m, θ  = 900 

Solution: 

The potential due to a dipole at a distance r and angle θ from the axis is given by 

V (r, θ  ) = 1 

4πε0 

qd cos θ 
r2 

For θ = 00 (along the dipole axis) 

V
(

0.1, 00
) = 1.8 × 1016 V 

For θ = 900 (perpendicular to the dipole axis) 

V
(

0.1, 900
) = 0 

Example 3.14 Consider a quadrupole with charges +q, −q, +q, −q located at posi-
tions along the z-axis, ±d and ±2d where q = 2 × 10−6 C and d = 5 × 10−2 m.
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Deduce the approximate potential at a point r = 1m  far away from the quadrupole, 
along the z-axis. 

Solution: 

For a quadrupole, the leading term in the potential at large distance r � d can be 
given by 

V (r, θ  ) = 1 

4πε0 

Q 

r3 
P2(cos θ ) 

where Q = ∑
qz2 for the quadrupole moment and P2(cos θ ) = 3 cos2 θ −1 

2 
The charges are positoned along the z-axis as follows: 

• +q at z = +d , −q at z = +2d , +q at z = −d and −q at z = −2d 

Q = −6qd2 

Given that, q = 2 × 10−6C and d = 5 × 10−2 m. 

Q = −3.0 × 10−8 Cm2 . 
r = 1 m and θ = 00 

V
(

1, 00
) = −270 V 

Example 3.15 A circular loop of radius a = 0.1m  possesses a current I = 5A. 
Determine the approximate vector potential �A at a point located at a distance r = 1m  
from the loop along its axis using the dipole term in the multipole expansion. 

Solution: 

We know that

�ADipole = 
μ0I 

4πr2 
∫ r′ cos αdl′

For a circular loop dipole moment m = I πa2 = 5 × 3.14 × (0.1)2 = 0.157 Am2 

Since r̂ is along z-axis, �m × r̂ points in the azimuthal direction

�ADipole = 
4π × 10−7 × 0.157 

4π × (1)2
= 1.57 × 10−8 Tm 

Example 3.16 Using the magnetic dipole moment m = 0.157 Am2 from an Example 
3.15, calculate the magnetic field �B at a point r = 1m  along the direction of dipole
(

θ = 00
)

.
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Solution: 

The magnetic field �B in terms of the dipole moment is given by

�B = 
μ0m 

4πr3
(

2 cos θ ̂r + sin θ θ̂
)

Along the axis θ = 00 �B is given as 

Br = 
μ0m 

4πr3
(

2 cos 00
) = 3.14 × 10−8 T 

Example 3.17 For a circular current loop of radius a = 0.2m  with current I = 10 A, 
deduce the vector potential �A approximately at a point r = 1m  located at an angle 
θ = 450 from the loop axis using the dipole term. 

Solution: 

Magnetic dipole moment is 

m = I πa2 = 10 × 3.14 × (0.2)2 = 1.256 Am2 

ADipole = 
μ0 

4π 
m sin θ 
r2 

Substitute θ = 450, r = 1m  

ADipole = 
4π × 10−7 × 1.256 × sin 450 

4π × (1)2
= 8.8 × 10−8 Tm 

Example 3.18 Consider a square current loop with side length a = 0.1m  and current 
I = 5A, positioned such that its centre is at the origin. Calculate the vector potential
�A at a distance r = 2m  along the axis perpendicular to the plane of the loop and 
quadrupole terms. 

Solution: 

Since the loop is square with side a, area  A = a2 = 0.01 m2 

m = IA = 0.05 Am2 

ADipole = 
μ0 

4π 
m 

r2 
= 1.25 × 10−9 Tm 

The quadrupole term for θ = 00 is given by 

Aquadrupole = 
μ0 

4π 
Ia2 cos 2θ 

r3
= 6.25 × 10−10 Tm
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Total vector potential 

A = ADipole + Aquadrupole = 1.875 × 10−9 Tm 

Unsolved Problems: 

Problem 3.1 A thunder cloud is stationary above level ground. Regarding the earth 
as a perfect conductor and the thunder cloud as an electric dipole with its axis vertical, 
show that the electric fieldat a point on the ground is proportional to 3sin5 α − sin3 α, 
where α is the elevation of the cloud from the point. 

Problem 3.2 A point charge is placed between two semi-infinite conducting plates 
which are inclined at angle of 300 with respect to each other. Calculate the number 
of image charges. 

Ans. 11. 

Problem 3.3 An infinitely long thin cylindrical shell has its axis coinciding with 
z-axis. It carries asurface charge density σ0cos φ, where φ is the polar angle and σ0 

is constant. Calculate the magnitude of the electric field inside the cylinder. 
Ans. σ0 

2ε0 
. 

Problem 3.4 Calculate the electrostatic charge density ρ(�r) corresponding to the 
potential V (r) = q 

4πε0 

1 
r

(

1 + αr 2
)

exp(−αr) 
Ans. − q 4π α

3 e−αr 

2 . 

Problem 3.5 A grounded conducting sphere of radius a is placed with its centre at 
the origin. A point dipole of dipole moment �p = pk̂ is placed at a distance d along 
the x-axis, where î, ̂j are the unit vectors along the x and z-axes respectively. This 
leads to the formation of an image dipole of strength �p at a distance d ′ from the centre 
along the x-axis. If d ′ = a2 d , then calculate �p′. 

Ans. �p′ = − a3 

d3 pk̂ . 

Problem 3.6 A grounded metal sheet is located in the z = 0 plane, while a point 
charge Q is located at (0, 0, a). Find the force acting on a point charge -Q placed at 
(a, 0, a). 

Ans. Q2 

4πε0a2 
(−9.1âx − 0.071ây)N . 

Problem 3.7 A point charge +q is placed at (0, 0, d ) above a grounded infinite 
conducting plane defined by z = 0. There are no charges present anywhere else. 
What is the magnitude of the electric field at (0, 0, −d )? 

Ans. q 
16πε0d2 . 

Problem 3.8 Calculate the magnetic field corresponding to the vector potential �A =
1 
2
�F × �r + 10 r3 �r, where �F is a constant vector. 
Ans. �F .
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Problem 3.9 A charge distribution has a charge density given by ρ = 
Q{δ(x − x0) − δ(x + x0)}. For this charge distribution calculate the electric field 
at (2x0, 0, 0) 

Ans. Q 
8πε0x2 0 

x̂. 

Problem 3.10 A charged particle is at a distance d from an infinite conducting plane 
maintained at zero potential. When released from rest, the particle reaches a speed 
u at a distance d 2 from the plane. At what distance from the plane will the particle 
reach the speed 2u? 

Ans. d 5 . 

Problem 3.11 Consider an axially symmetric charge distribution of the form, ρ = 
ρ0
( r0 
r

)2 
e− r 

r0 
cos2 φ. Calculate the radial component of the dipole moment due to this 

charge distribution. 
Ans. 2πρ0r0 3. 

Problem 3.12 Two-point charges +3Q and−Q are placed at (0, 0, d ) and (0, 0, 2d ) 
respectively, above an infinite grounded conducting sheet kept in xy-plane. At a point 
(0, 0, z), where z >> d , calculate the approximate electrostatic potential of this 
charge configuration. 

Ans. 1 
4πε0 

2d 
z2 Q. 

3.8 Summary 

• The Chapter Introduces Three Methods: Separation of Variables, Method of 
Images, and Finite Element Analysis (for 2D cases). 

• Method of Images Concept: Imaginary (image charges) are used to simplify 
boundary problems by meeting boundary conditions. These charges are positioned 
outside the region of interest to emulate the influence of actual charges near 
conductive surfaces. 

– We have derived the potential due to a real charge and its image charge. 
– We have derived the formulas for electric field, surface charge density, 

Coulomb force and work required to move charges. 

• Electrostatic Interaction with a Grounded Conducting Sphere: The behaviour 
of a source charge is near a grounded sphere by introducing image charges. We 
have made calculations for potential and force due to interactions between the 
charge and the sphere. 

• Special Cases for Force Calculation: 

– Short Distance: Force approximates Coulomb’s law. 
– Long Distance: Force diminishes proportionally to the cube of separation, 

indicating a deviation from Coulomb’s law at larger distances.
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• Surface Charge Density on Conducting Sphere: Formula for induced surface 
charge density is derived and analyzed for different positions (angles) on the 
sphere’s surface. It demonstrates the variation of charge density with angle θ. 

• Point Charge Near an Insulated Conducting Sphere: 

– Analyzes the potential and surface charge distribution when a point charge 
interacts with an insulated sphere carrying a charge Q. 

– Uses the superposition principle to calculate the potential and force on the 
charge. 

• Conducting Sphere in a Uniform Electric Field: 

– Examines the potential around a conducting sphere placed in a uniform electric 
field. 

– Introduces the image charges required to meet boundary conditions and 
calculates the induced surface charge density. 

• Multipole Expansion and Electric Dipole Potential: 

– Explains the multipole expansion for the electric potential due to complex 
charge distributions. 

– Covers monopole, dipole and quadrupole terms, and the behaviour of electric 
potential at large distances. 

• Vector Potential Using Multipole Moments: 

– Introduces the concept of vector potential, which involves expanding terms in 
powers of 1/r. 

– Discusses the magnetic dipole moment and its independence from the origin, 
relating to Maxwell’s equation. 

• Conducting Sphere in a Uniform Electric Field: 

– Placing a sphere in a uniform electric field generates image charges that balance 
the field at the sphere’s surface. 

– Potential and surface charge density for different regions on the sphere’s surface 
are calculated. 

• Multipole Expansion and Dipole Moment: 

– Multipole expansion is applied to complex charge distributions, breaking down 
potential into monopole, dipole and quadrupole components. 

– Provides a deeper understanding of electric potential at different distances, 
especially for systems with symmetrical charge distributions. 

• Vector Potential and Magnetic Dipole: 

– Vector potential is expanded using multipole moments to represent magnetic 
fields for current-carrying loops.
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– The concept of magnetic dipole moment is introduced, noting its consistency 
with Maxwell’s equations, specifically �∇.�B = 0. 

• Applications of Dipole Potential and Magnetic Fields: 

– Electric potential for dipoles and quadrupoles is calculated, showing behaviour 
at distances. 

– Magnetic dipole configurations, vector potentials and field calculations rein-
force understanding of magnetic multipoles and their influence on nearby 
fields. 

• Examples and Unsolved Problems: 

– Includes solved examples illustrating applications of the concepts, such as 
calculating force, potential and surface charge density for different configura-
tions. 

– Provides unsolved problems to practice calculations based on learned princi-
ples.



Chapter 4 
Dynamics of Electric and Magnetic Fields 

Abstract This chapter explores the fundamentals and advanced formulations of 
magnetic phenomena, starting with the transition from electrostatic to magneto-
static fields. Magnetic fields, arising from currents, are distinguished from electric 
fields, which originate from charges. Utilizing the vector potential �A via Biot-Savart 
law provides a practical and theoretical framework, analogous to the electrostatic 
potential V. Maxwell’s equations integrate time-varying electric and magnetic fields, 
redefining them in terms of potentials. Gauge transformations reveal the flexibility 
in electrodynamic formulations, with the Coulomb gauge simplifying static prob-
lems and the Lorentz gauge providing symmetry for relativistic contexts. Continuous 
charge distributions and retarded potentials account for finite electromagnetic propa-
gation speeds. Jefimenko’s equations and Lineard–Wiechert potentials describe fields 
influenced by dynamic and moving sources, elucidating velocity- and acceleration-
dependent effects. The fields of a moving point charge are analyzed, with components 
reflecting both Coulombic and radiative influences. This comprehensive approach 
bridges theory and application, enhancing understanding of magnetic fields, vector 
potentials and their electrodynamic implications. 

Keywords Biot-Savart law · Gauge transformations · Jefimenko’s equations ·
Lineard–Wiechert potentials 

4.1 Introduction 

So far we have discussed various electrostatic phenomena and now we turn to study 
steady-state magnetic phenomena. It is pertinent to mention here that the basic laws 
of magnetic fields did not follow directly from human being’s earliest contact with 
magnetic materials. There may be several reasons but they mainly follow from 
the radical difference between magnetostatics and electrostatics. There are no free 
magnetic charges although the notation of a magnetic charge density may be a useful 
mathematical construct in certain circumstances. As discussed already, we are more 
comfortable if we compute V instead of computing �E. The advantage of working
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with V is that it is scalar, nonetheless �E is vector. On the other hand, in electro-
dynamics �E = −�∇V will not work. In the same way in magnetostatics, we can 
have a potential rather than field. Potential formulation is important for theoretical 
aspect/understanding. However, for practical purposes, it is better to deal with the 
magnetic field. In case of electrostatics, we measure electric potential, but in lab we 
can’t measure vector potential. In electrostatic we measure potential difference not 
absolute potential. For static magnetic field, there exists a potential that we can under-
stand mathematically. Experimentally it is confirmed that current-carrying conductor 
is having magnetic field around it. Current density is the moving charge density. 

4.2 Vector Potential 

The Coulomb’s law and the Biot-Savart laws are, respectively, as:

�E = 1 

4πε0

∫
ρ
(�r′)R̂ 
R2 

dτ ′ (4.1) 

And

�B = 
μ0 

4π

∫
�J (�r′) × 

R̂ 

R2 
dτ ′ (4.2) 

From the above equations it is evident that, we need source ρ
(�r′) to create �E and 

source �J (�r′) to create �B. Only difference between �E and �B is the source. 
Remember

�∇(1/R) = 
− ̂R 
R2 

; where �R = �r − �r′

�∇′(1/R) = −�∇(1/R) and ∇2 (1/R) = −4πδ3
(�r − �r′)

We employ following formulae in order to develop relations for magnetic fields

�∇ ×
(
f �A

)
= f

( �∇ × �A
)

− �A ×
( �∇f

)

and

�∇ ·
(
f �A

)
= f

( �∇ · �A
)

+ �A ·
( �∇f

)

In our case �J → �A and f → 1 r
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Equation (4.2) can, therefore, be written as

�B(�r) = 
−μ0 

4π

∫
�J (�r′) × �∇(1/R)dτ ′ (4.3) 

which is simplified as follows:

�B(�r) =
∫

μ0 

4π

[
�∇ ×

( �J (�r′)
R

)
− 

1 

R

( �∇ × �J (�r′))
]
dτ ′

�B(�r) =
∫

μ0 

4π

[
�∇ ×

( �J (�r′)
R

)]
dτ ′

�B(�r) = 
μ0 

4π

[
�∇ ×

∫ �J (�r′)
|�r − �r′|dτ

′
]

(4.4) 

Here, we have changed the order of integral and �∇ operates on x, y, z and integral 
operates on x′, y′, z′.

�B(�r) = �∇ ×
[

μ0 

4π

∫ �J (�r′)
|�r − �r′| dτ

′
]

(4.5) 

The quantity within the brackets is a vector quantity, symbolized as �A. Hence, we 
can write the magnetic field as

�B(�r) =
( �∇ × �A

)
(4.6) 

where the quantity �A is defined as

�A = 
μ0 

4π

∫ �J (�r′)
|�r − �r′| dτ

′ (4.7) 

Conclusion: It is evident from the above illustration that we can deduce magnetic 
field, provided we know another vector quantity �A, reckoned as the magnetic vector 
potential. Further, this concept can be generalized to solve Gauss law, �∇ · �B. �∇ · �B.

�∇ · �B = �∇ ·
( �∇ × �A

)

We know that the divergence of curl vanishes always. Hence, we can write

�∇ · �B = 0 (4.8)
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which is dubbed as Gauss law and it signifies that the magnetic monopoles do not 
exist at all. This equation also permits us to express �B as the curl of some vector field
�A, called the vector potential.

�∇ × �B = �∇ ×
( �∇ × �A

)

�∇ × �B = �∇
( �∇ · �A

)
− ∇2�A 

The above equation can be simplified if we insert the notation of magnetic vector 
potential

�∇ × �B = 
μ0 

4π

[
�∇
(

�∇ ·
∫ �J (�r′)

|�r − �r′|dτ
′
)]

−
[

μ0 

4π 
∇2

∫ �J (�r′)
|�r − �r′| dτ

′
]

(4.9) 

Again, the same argument �∇ operates on x, y, z and integral operates on x′, y′, z′. 
Let 

I1 = 
μ0 

4π

[
�∇
(

�∇ ·
∫ �J (�r′)

|�r − �r′| dτ
′
)]

(4.10) 

which can be further modified as 

I1 = 
μ0 

4π

[
�∇
(

�∇ ·
∫ �J (�r′)

R 
dτ ′

)]
(4.11) 

which resembles with the following integral

∫
�∇ ·

(
K �F

)
dτ ′, where �J (�r′) = �F and K = 

1 

R 

From the Gauss Divergence theorem, we know that

∫ ( �∇ · �V
)
dτ ′ =

∮
�V · d�s′

Therefore, we can write

∫ ( �∇ ·
(
K �F

))
dτ ′ =

∮ (
K �F

)
· d�s′
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Using the same concept in our problem, we can write as

�∇ ·
∫ �J (�r′) 

R 
dτ ′ =

∮ �J (�r′) · d�s′
R

= 0 (4.12) 

Current flowing normal to the surface, i.e.,
∫ �J (�r′) · d�s′, is the current flowing 

normal to surface. R.H.S is the algebraic sum of currents in a closed loop, that 
should be (zero). Hence, we can write I1 = 0. 

Next, we consider I2 as follows: 

I2 = 
μ0 

4π 
∇2

∫ �J (�r′)
|�r − �r′| dτ

′ (4.13) 

I2 = 
μ0 

4π

∫
�J (�r′)∇2

(
1 

R

)
dτ ′

I2 = 
μ0 

4π

∫
�J (�r′) · (−4πδ3

(�r − �r′))dτ ′

I2 = −μ0

∫
�J (�r′) · (δ3(�r − �r′))dτ ′

I2 = −μ0�J
(�r′) (4.14) 

Hence Eq. (4.9) becomes

�∇ × �B = I1 − I2 = 0 −
(
−μ0�J

(�r′))

�∇ × �B = μ0�J
(�r′) (4.15) 

which is only valid for magnetostatics as we have assumed that uniform current 
density is present in the circuit. In case of non-steady current I1 �= 0. We see that as 
we started from the Biot-Savart law, we have established the following.

�∇ · �B = 0
�B = �∇ × �A 

and

�∇ × �B = μ0�J
(�r′)
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4.3 Potentials and Fields Formulations 

Maxwell’s relations discuss the behaviour of electromagnetic fields. These are a set 
of coupled first-order partial differential equations which relate electric and magnetic 
fields. These relations can be enumerated as follows:

�∇ · �E = 
ρ

ε0

�∇ × �E = 
−∂ �B 
∂t

�∇ · �B = 0

�∇ × �B = μ0�J + μ0ε0 
∂ �E 
∂t 

(4.16) 

Here ρ(�r, t) and �J (�r, t) are the given sources. We can deduce the fields �E(�r, t) and
�B (�r, t) corresponding to ρ(�r, t) and �J (�r, t), provided we utilized the concept of 
Coulomb’s law and the Biot-Savart law in static case. We aim to generalize these 
laws to the time-dependent charge configuration. In electrostatics �∇ × �E = 0, which 
can be extended to write electric field, �E as the negative gradient of scalar potential. 
However, this concept cannot be extended to electrodynamics because the curl of �E 
does not vanish there. But �B remains divergenceless. Therefore, we can write

�∇ × �E = 
−∂ �B 
∂t 

and �B = �∇ × �A 

Thus, the Eq. (4.16) attains the following form

�∇ × �E = 
−∂

( �∇ × �A
)

∂t

�∇ ×
(

�E + 
∂ �A 
∂t

)
= 0 (4.17) 

It is noteworthy that if the curl of some physical quantity vanishes, it can, therefore, 
be explicitly exhibited as the gradient of some scalar potential function, i.e.,

�E + 
∂ �A 
∂t 

= −�∇V (4.18) 

From this expression it follows that

�E = −�∇V − 
∂ �A 
∂t 

(4.19)
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Substitute Eq. (4.19) in Maxwell’s first equation, we get 

∇2 V + 
∂
( �∇ · �A

)

∂t
= −  

ρ

ε0 
(4.20) 

which reduces to Poisson’s equation in the steady-state case. Putting the above 
equations in the Maxwell’s fourth equation, we get

�∇ ×
( �∇ × �A

)
= μ0�J − μ0ε0 �∇ ∂V 

∂t 
− μ0ε0 

∂2�A 
∂t2 

Using the identity, �∇ ×
( �∇ × �A

)
= �∇

( �∇.�A
)

− ∇2�A and rearranging the terms, 
we get

(
∇2�A − μ0ε0 

∂2�A 
∂t2

)
− �∇

(
�∇ · �A + μ0ε0 

∂V 

∂t

)
= −μ0�J

�∇
( �∇ · �A

)
− ∇2�A = μ0�J − μ0ε0 �∇ 

∂V 

∂t 
− μ0ε0 

∂2�A 
∂t2 

∇2�A − μ0ε0 
∂2�A 
∂t2 

− �∇
(

�∇ · �A + μ0ε0 
∂V 

∂t

)
= −μ0�J (4.21) 

Thus, the set of four-Maxwell’s relations have been reduced to two coupled 
differential equations. 

Example 4.1 A finite wire segment of length L = 1.0 m  carrying current I = 8 A  
lies along the z-axis from z = −0.5 m  to z = +0.5 m. Calculate the vector potential 
A at a point 0.6 m from the wire along the x-axis. 

Solution: 

The vector potential at a perpendicular distance r from the wire segment is given by 

Aφ = 
μ0I 

4π 

L/2∫

L/2 

1 √
r2 + z2 

dz 

Aφ = 
μ0I 

4π

[
ln
(
z + 

√
r2 + z2

)]
|+0.5 
−0.5 

Aφ = 1.21 × 10−6 Tm 

Example 4.2 Consider a current density �J (x, y, z, t) = J0 sin(ωt)δ(x)δ(y)δ(z)ẑ, 
where J0 is a constant and ω is the angular frequency. Determine the electric field �E 
generated by this time-dependent current source.
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Solution:

�A = μ0 

4π

∫ J(x′,y′,z′,t−R/c) 
R d3x′ , we can calculate �A directly as

�A(r, t) = 
μ0J0sin(ω(t − R/c)) 

4π R 
ẑ 

The electric field �E is �E = −�∇V − ∂ �A 
∂t 

Assuming V = 0

�E = −  
μ0J0ω cos(ω(t − R/c)) 

4πR 
ẑ 

Example 4.3 An oscillating charge distribution is given by ρ(x, y, z, t) = ρ0e−r2/a2 , 
where ρ0 and a are constants, and ω is the angular frequency. Find the vector potential
�A generated by this charge distribution. 

Solution: 

The current density �J = ρ�v, assuming a radial oscillation �v = v0 sin(ωt)r̂

�J (r, t) = ρ0e
−r2/a2 v0 sin(ωt)r̂ 

The vector potential is given by

�A(r, t) = 
μ0 

4π

∫ �J (�r′, t − ∣∣r − �r′∣∣)d3�r′

|r − �r′| 

Substitute �J (�r′, t
)
and assume �r � �r′�r � �r′

�A(r, t) = 
μ0ρ0v0π 3/2a3 

4π r 
sin(ω(t − r/c))r̂

�A(r, t) = 
μ0ρ0v0π 3/2a3 

4r 
sin(ω(t − r/c))r̂ 

Example 4.4 Given V (�r, t) = V0 
cos(ωt) 

r and �A(r, t) = A0 
sin(ωt) 

r r̂. Determine the 
electric field �E. 

Solution: 

Using �E = −�∇V − ∂ �A 
∂t

�∇V = −V0 
cos(ωt) 

r2 
r̂
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∂ �A 
∂t 

= A0 
ω cos(ωt) 

r 
r̂

�E = −
(

−V0 
cos(ωt) 

r2 
r̂

)
− A0 

ω cos(ωt) 
r 

r̂

�E =
(
V0 

r2 
+ 

ωA0 

r

)
cos(ωt)r̂ 

4.4 Gauge Transformations 

We can deduce ρ and �J provided we are familiar with fields �E and �B. Equations (4.20) 
and (4.21) are coupled differential equations; however, we have been successfully 

able to reduce a six-body problem
(�E, �B

)
to four body problem

(
V , �A

)
. The expres-

sions ∇2V + 
∂
( �∇.�A

)
∂t = −  ρ

ε0 
and �B = �∇ × �A do not uniquely determine the potentials. 

We are free to impose extra conditions on V and �A, as long as nothing happens to
�E and �B. This can be done by using gauge transformations. 

Let
(
V , �A

)
and

(
V ′, �A′

)
, be the two sets of potentials, corresponding to the same 

electric and magnetic fields. Using the gauge transformation.

�A′ = �A + �α and V ′ = V + β (4.22) 

Since, the two �A′s results in same �B, their curls must be equal, hence �∇ × �α = 0. 
Therefore, we can illustrate �α as the gradient of some scalar potential as under.

�α = �∇λ (4.23) 

Since, these two potentials result in the same electric field �E, therefore, we can 
write

�∇β + 
∂ �α 
∂t 

= 0

�∇
(

β + 
∂λ 
∂t

)
= 0 (4.24) 

The term within the brackets is, therefore, independent of position, however it 
could depend on time, we can call it as K(t). Taking gradient of V ′ and �A′�A′

�∇V ′ = �∇V + �∇β (4.25)
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∂ �A′

∂t 
= 

∂ �A 
∂t 

+ 
∂ �α 
∂t 

(4.26) 

Adding Eqs. (4.25) and (4.26) and multiplying the result by minus sign, we get 

− �∇V ′ − 
∂ �A′

∂t 
= −�∇V − 

∂ �A 
∂t 

− �∇β − 
∂ �α 
∂t

�E = �E −
(

�∇β + 
∂ �α 
∂t

)

�∇β + 
∂ �α 
∂t 

= 0 

β = 
−∂λ 
∂t 

+ K(t) 

K(t) = β + 
∂λ 
∂t 

(4.27) 

We could, as well absorb K(t) in to λ, if we redefine λ′ as follows: 

λ′ → λ + 
t∫

0 

K(t)dt 

On adding
∫ t 
0 K(t)dt, to the previous expression, does not alter the gradient of λ. 

It just adds K(t) to ∂λ 
∂t . Therefore, it follows from the elucidation that

�A′ = �A + �∇λ and V ′ = V − 
∂λ 
∂t 

(4.28) 

Conclusion: 

For any old scalar function λ(�r, t), we can add �∇λ to −→A provided we at the same 
time subtract ∂λ 

∂t from V. This will not change the basic structure of the physical 

quantities �E and �B. These mathematical changes in V and �A are referred as gauge 
transformations and the invariance of fields under such transformations is called 
gauge invariance. However, we choose �∇ · �A = 0, in magnetostatics. But, in case of 
electrodynamics the picture is not so simple. The most convenient gauge depends to 
some extent on the problem at hand. There are some famous gauge transformations, 
which we will discuss in the succeeding sections.
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4.5 Coulomb’s Gauge 

So far, we see that for many potentials, we have same �E and �B, therefore, we are at 
ease to add anything to potential. As in magnetostatics, we take �∇ · �A = 0, Eq.  (4.20) 
can be written as: 

∇2 V = 
−ρ

ε0 
(4.29) 

which is the famous equation called as Poisson’s equation and its solution is given 
by as under 

V (�r, t) = 1 

4πε0

∫
ρ
(�r′, t

)
dτ ′

R 
(4.30) 

Here, the potential can be determined by the distribution of charges. The essence of 
the Coulomb’s gauge lies in the fact that the scalar potential can be evaluated easily. 
The disadvantage is that the vector potential, �A is extremely difficult to be calculated 
from the Coulomb’s gauge. The differential equations for �A in the Coulomb’s gauge 
is written as under 

∇2�A − μ0ε0 
∂2�A 
∂t2 

= −μ0�J + μ0ε0 �∇
(

∂V 

∂t

)
(4.31) 

4.5.1 The Lorentz Gauge 

Lorentz gauge condition is written as follows:

�∇ · �A = −μ0ε0 
∂V 

∂t 
(4.32) 

This gauge condition will help to uncouple the pair of Eqs. (4.20) and (4.21) and, 
thereby produces two inhomogeneous wave equations simultaneously for V and �A 
as follows: 

∇2 V − μ0ε0 
∂2V 

∂t2 
= 

−ρ

ε0 
(4.33) 

∇2�A − μ0ε0 
∂2�A 
∂t2 

= −μ0�J (4.34)
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The importance of the Lorentz gauge lies in the fact that it treats V and �A on 
equivalent footings. Further, this concept is independent of the coordinate system 
chosen and therefore, fits easily into the considerations of special relativity. Further, 
we define d’Alembertian operator as follows: 

∇2 − μ0ε0 
∂2 

∂t2 
= �2 (4.35) 

Utilizing the concept of d’Alembertian operator, Eqs. (4.33) and (4.34) will 
respectively assume the following form

�2 V = −  
ρ

ε0 
(4.36)

�2�A = −μ0�J (4.37) 

The delicate procedure of V and �A is very awesome in the context of theory of 
special relativity, where, the d’Alembertian is the natural extension of Laplacian and 
Eqs. (4.36) and (4.37) can be referred as four-dimensional versions of Poisson’s equa-
tion. However, in the Lorentz gauge V and �A satisfy inhomogeneous wave equations 
where the source term is placed on the right side of the equation. Therefore, the entire 
theory of electrodynamics revolves around the problem of solving inhomogeneous 
wave equations for specified sources. 

Example 4.5 Given an initial vector potential �A(r, t) = A0e−(x2+y2 ) ẑ and the scalar 
potential V = V0xe−t , find the gauge transformation needed to make the scalar 
potential V ′ time independent, if possible. 

Solution: 

The gauge transformations are defined as

�A′ = �A + �∇λ, V ′ = V − 
∂λ 
∂t 

We aim V ′ to be time independent ∂V
′

∂t = 0 ⇒ ∂2λ 
∂t2 = ∂V 

∂t = −V0xe−t 

With V = V0xe−t 

∂λ 
∂t 

= V0xe
−t 

On integrating, we find ∂λ 
∂t = −V0xe−t + g(x, y, z) 

Using this in the above equation gauge transformation results in V ′ being 
independent of time as desired.
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Example 4.6 Given potentials �A(�x, t) = A0cos(kx − ωt)x̂ and V (�x, t) = 
V0 sin(kx − ωt). Find the gauge function λ to transform �A and V into the Coulomb 
gauge, where �∇ · �A′ = 0. 

Solution: 
The coulomb gauge condition requires �∇.�A′ = 0 with �A′ = �A + �∇λ. 
We have

�∇ · �A′ = �∇.�A + ∇2 λ = 0
�∇ · �A = −kA0 sin(kx − ωt) 

Solving for λ(�x, t), we get λ(�x, t) = −A0 
k sin(kx − ωt) 

Hence �∇ · �A′ = 0. 

Example 4.7 For potentials �A(�x, t) = A0 sin(kx)e−αt x̂ and V (�x, t) = V0 cos(kx)e−αt . 
Find a gauge transformation to ensure that the gauge transformation condition is
�∇ · �A + 1 c2 

∂V 
∂t = 0. Given that k2 = α2 

c2 

Solution: 

The Lorentz gauge requires

�∇ · �A + 
1 

c2 
∂V 

∂t 
= 0

�∇ · �A = kA0 cos(kx)e
−αt and 

∂V 

∂t 
= −αV0 cos(kx)e

−αt 

Substituting into the gauge condition 

kA0 cos(kx)e
−αt − 

1 

c2 
αV0 cos(kx)e

−αt = 0 

kA0 = 
α2 

c2 
V0 

Assume a gauge function λ(�x, t) such that

�∇ ·
(�A + �∇λ

)
+ 

1 

c2 
∂ 
∂t

(
V − 

∂λ 
∂t

)
= 0 

For Lorentz condition to be met λ(�x, t) = A0 
k sin(kx − ωt)e−αt
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�∇ · �A′ + 
1 

c2 
∂V ′

∂t 
= 0. 

Example 4.8 Suppose V = 0 and �A = A0 sin(kx − ωt)ŷ, where A0, ω  and k are 
constants. Find �E and �B. 

Solution: 

The electric field is given by:

�E = −�∇ �V − 
∂ �A 
∂t

�E = A0 ω cos(kx − ωt)ŷ 

This shows that the electric field oscillates in the y-direction with amplitude A0ω and 
the same spatial and temporal dependence as the vector potential. 

The magnetic field is given by the curl of the vector potential: �B = �∇ × �A
�B = A0k cos(kx − ωt)ẑ 

This shows that the magnetic field oscillates in the z-direction with amplitude A0k 
and the same spatial and temporal dependence as the vector potential. 

4.6 Continuous Charge Distributions 

In the continuous charge distributions, we discuss the concept of retarded potentials. 

4.6.1 Retarded Potentials 

For the static case, we know that the equations for the scalar and vector potential are 
∇2V = −ρ

ε0 
and ∇2�A = −μ0�J respectively. We already know the solutions of these 

equations as: 

V (�r) = 1 

4πε0

∫
ρ
(�r′)dτ ′

R 
(4.38) 

and

�A(�r) = 
μ0 

4π

∫ �J (�r′, t
)
dτ ′

R 
(4.39)
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As, we know that the electromagnetic waves travel with the speed of light. There-
fore, in non-static case it is not the state of the source that is of prime importance at 
some particular instant, but rather its condition at some earlier time tr (retarded time) 
when the message has left. 

tr = t − 
R 

c 
(4.40) 

where c is the speed of light in vacuum. 
For the generalization of the non-static case, we can write Eqs. (4.38) and (4.39) 

as follows: 

V (�r, t) = 
1 

4πε0

∫
ρ
(�r′, tr

)
dτ ′

R 
(4.41)

�A(�r, t) = 
μ0 

4π

∫ �J (�r′, tr
)
dτ ′

R 
(4.42) 

These are the potentials that have to be calculated at a retarded time and are there-
fore, called as retarded potentials. However, it is logically correct that we did not 
solve Eqs. (4.38) and (4.39) but introduced an interesting argument that the elec-
tromagnetic waves traverse through vacuum with the speed of light. Thus, to prove 
Eqs. (4.41) and (4.42) are solutions, it is incumbent that these equations must satisfy 
inhomogeneous Eqs. (4.38) and (4.39) while conforming Lorentz conditions. Further, 
it may sound bizarre but it is logically sound argument that the same procedure cannot 
be applied to fields, i.e.,

�E(�r, t) �= 1 

4πε0

∫
ρ
(�r′, tr

)
R̂dτ ′

R2

�B(�r, t) �= 
μ0 

4π

∫ �J (�r′, tr
)
R̂dτ ′

R2 

R = ∣∣�r − �r′∣∣
and 

tr = t − 
R 

c 

From Eq. (4.41), we can write:

�∇V = 1 

4πε0

∫
�∇
(

ρ
(�r′, tr

)
dτ ′

R

)
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�∇V = 1 

4πε0

∫ [( �∇ρ
) 1 
R 

+ ρ �∇
(
1 

R

)]
dτ ′

since

�∇ρ = 
∂ρ 
∂tr 

∂tr 
∂r 

= ρ̇ �∇tr = 
−1 

c 
ρ̇ �∇R

�∇R = R̂ and �∇
(
1 

R

)
= 

− ̂R 
R2

�∇V = 1 

4πε0

∫ [− ̇ρ 
c 

R̂ 

R 
− ρ 

R̂ 

R2

]
dτ ′

Taking divergence of above equation and noting the following fact, we get:

�∇ ·
(
f �A

)
= f

( �∇ · �A
)

+ �A ·
( �∇f

)

∇2 V = 1 

4πε0

∫ [−1 

c
�∇ ·

(
ρ̇ 
R̂ 

R

)
− �∇

(
ρ 
R̂ 

R2

)]
dτ ′

∇2 V = 1 

4πε0

∫ [−1 

c

(
R̂ 

R 
· �∇ ρ̇

)
+ ρ̇ �∇ ·

(
R̂ 

R

)
−
{
R̂ 

R2 
·
( �∇ρ

)
+ ρ �∇

(
R̂ 

R2

)}]
dτ ′

(4.43) 

But we know that:

�∇ ρ̇ = 
−1 

c 
ρ̈ �∇R = 

−1 

c 
ρ̈ ̂R and �∇ ·

(
R̂ 

R

)
= 

1 

R2 
; �∇ ·

(
R̂ 

R2

)
= 4πδ3 (�r) 

We incorporate above equations in Eq. (4.43) and the equation for ∇2V becomes 

∇2 V = 1 

4πε0

∫ [−1 

c

(
R̂ 

R 
·
(−1 

c 
ρ̈ ̂R

))
+ ρ̇ 

1 

R2 

−
{
R̂ 

R2 
·
(−1 

c 
ρ̇ �∇R

)
+ 4πρδ3 (�r)

}]
dτ ′

∇2 V = 1 

4πε0

∫ [
1 

c2

(
ρ̈ 
R

)
− 4πρδ3 (�r)

]
dτ ′

∇2 V = 
1 

c2 
∂2V 

∂t2 
− 

1 

ε0 
ρ(�r, t)

�2 V = 
−ρ 
ε0
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Thus Eq. (4.41) satisfies inhomogeneous Eq. (4.36) and proceeding in the same 
manner, we can prove that Eq. (4.42) satisfies inhomogeneous Eq. (4.37). The same 
is true for the advanced potentials 

Va(�r, t) = 1 

4πε0

∫ [(
ρ(r, ta) 

R

)]
dτ ′ (4.44) 

and

�Aa(�r, t) = 
μ0 

4π

∫ [( �J (r, ta) 
R

)]
dτ ′ (4.45) 

Here 

ta = t + 
R 

c 

It is pertinent to mention here that the advanced potentials are very consistent 
with the Maxwell’s equations, but they violate the principle of causality. 

Example 4.9 A spherical volume of radius R centred at the origin has a uniform 
charge density ρ

(
r′, t

) = ρ0 sin(ωt), where ρ0 is a constant. Find the potential due 
to a uniform distribution. 

Solution: 

Retarded time tr = t − R/c. 
For continuous charge distribution scalar potential is 

V (�r, t) = 1 

4πε0

∫
ρ(�r, tr) 
|�r − �r′| dτ

′

The potential due to a uniform distribution within a sphere is equivalent to a point 
charge at the origin. Hence 

V (�r, t) = 1 

4πε0 

Q(tr) 
r 

where Q(tr) = ρ0 sin(ωtr) 4 3 πR
3 

V (�r, t) = 1 

4πε0 

ρ0 sin(ω(t − R/c)) 4 3 πR
3 

r 

V (�r, t) = 
ρ0R3 sin(ω(t − R/c)) 

3ε0r
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4.6.2 Jefimenko’s Equations 

In case of static charge and current distributions, the solutions of electric and magnetic 
fields are expressed in guise of Coulomb’s law and Biot-Savart law. However, for 
time-dependent charge and current distributions, the solutions for the fields are known 
as Jefimenko’s equations. We have the retarded potentials as 

V (�r, t) = 1 

4πε0

∫ [(
ρ(r, tr) 

R

)]
dτ ′ (4.46) 

and

�A(�r, t) = 
μ0 

4π

∫ [( �J (r, tr) 
R

)]
dτ ′ (4.47) 

The corresponding electric and magnetic potentials are given by

�E = −�∇V − 
∂ �A 
∂t 

and �B = �∇ × �A 

Let us first evaluate

�∇V = 1 

4πε0

∫ [
�∇
(

ρ(r, tr) 
R

)]
dτ ′

For two scalar functions ψ and φ, we can write:

�∇(ψφ) = φ �∇ψ + ψ �∇φ 

We have already derived

�∇V = 1 

4πε0

∫ [− ̇ρ 
c 

R̂ 

R 
− ρ 

R̂ 

R2

]
dτ ′

∂ �A 
∂t 

= 
μ0 

4π

∫ ∂ �J 
∂t 

R 
dτ ′

∂ �A 
∂t 

= 
μ0 

4π

∫ �̇J 
R 
dτ ′

Using these equations in the electric field equation, we get

�E = 
−1 

4πε0

∫ [− ̇ρ 
c 

R̂ 

R 
− ρ 

R̂ 

R2

]
dτ ′ − 

μ0 

4π

∫ �̇J 
R 
dτ ′
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or

�E = 
1 

4πε0

∫ {[
ρ 
R̂ 

R2 
+ 

ρ̇ 
c 

R̂ 

R

]
dτ ′ −

∫ �̇J 
c2R 

dτ ′
}

(4.48) 

which is the time-dependent generalization of the Coulomb’s law. 

Magnetic Field 

The magnetic field �B can be determined using the Biot-Savart law and its generaliza-
tion to account for time-varying currents. To derive this, we begin with the identity:
�B

�∇ ×
(
f �T

)
= f

( �∇ × �T
)

− �T × �∇f 

Here, 

f → 
1 

R 
and �T → �J

�∇ × �A = 
μ0 

4π

∫ [
�∇ ×

( �J 
R

)]
dτ ′

�∇ × �A = 
μ0 

4π

∫ [
1 

R

( �∇ × �J
)

− �J × �∇
(
1 

R

)]
dτ ′

�∇ × �J =

∣∣∣∣∣∣∣
î ĵ k̂ 
∂ 
∂x 

∂ 
∂y 

∂ 
∂z 

Jx Jy Jz

∣∣∣∣∣∣∣
( �∇ × �J

)
x 
= 

∂Jz 
∂y 

− 
∂Jy 
∂z 

and we can write ∂Jz 
∂y as: 

∂Jz 
∂y 

= 
∂Jz 
∂tr 

∂tr 
∂y 

= J̇z 
∂tr 
∂y 

tr = t − 
R 

c 
∂Jz 
∂y 

= 
−1 

c 
J̇z 

∂R 

∂y( �∇ × �J
)
x 
= 

−1 

c

(
J̇z 

∂R 

∂y 
− J̇y 

∂R 

∂z

)

( �∇ × �J
)
x 
= 

1 

c

(
J̇y 

∂R 

∂z 
− J̇z 

∂R 

∂y

)
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and 

�̇J × �∇R =

∣∣∣∣∣∣∣
î ĵ k̂ 
j̇x j̇y J̇z 
∂R 
∂x 

∂R 
∂y 

∂R 
∂z

∣∣∣∣∣∣∣
( �∇ × �J

)
x 
= 

1 

c

(�̇J ×
( �∇R

))
x

�∇R = R̂ 

Similarly, we can prove for y and z components

�∇ × �J = 
1 

c 
�̇J × R̂ 

Also,

�∇
(
1 

R

)
= 

− ̂R 
R2

�B(�r, t) = 
μ0 

4π

∫ [ �J 
R2 

+ 
1 

cR 
�̇J
]

× R̂dτ ′ (4.49) 

This is the generalization of the Biot-Savart law. This equation represents the 
magnetic field generated by a time-dependent current distribution and generalizes 
the Biot-Savart law to account for the effects of changing currents over time. 

Example 4.10 Suppose the current density is constant in time, so ρ(�r, t) = ρ(�r, 0)+ 
ρ̇(�r, 0)t. Using the Jefimenko equation for the electric field, show that �E(�r, t) =
1 

4πε0

∫
ρ(�r,tr ) 
r2 r̂d τ ′. 

Solution: 

We know that Jefimenko’s equation for the electric field is given by

�E(�r, t) = 
1 

4πε0

∫ [
ρ(�r′, tr) 

r2 
r̂ + 

ρ̇(�r′, tr) 
cr 

r̂ − 
�̇J (�r′, tr) 
c2r

]
dτ ′

In this case ρ̇(�r, t) = ρ̇(�r, 0) and �̇J (�r · t) = 0

�E(�r, t) = 
1 

4πε0

∫ [
ρ(�r′, 0) + ρ̇(�r′, 0)tr 

r2 
r̂ + 

ρ̇(�r′, 0) 
cr 

r̂ − 
0 

c2r

]
d τ ′

�E(�r, t) = 
1 

4πε0

∫ [
ρ(�r′, 0) + ρ̇(�r′, 0)(t − r c ) 

r2 
r̂ + 

ρ̇(�r′, 0) 
cr

]
r̂d τ ′
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�E(�r, t) = 
1 

4πε0

∫ [
ρ(�r′, 0) + ρ̇(�r′, 0)t 

r2
− 

ρ̇(�r′, 0) r c 
r2

+ 
ρ̇(�r′, 0) 

cr

]
r̂d τ ′

Therefore,

�E(�r, t) = 1 

4πε0

∫
ρ(�r, tr) 

r2 
r̂d τ ′. 

4.7 The Lineard–Wiechert Potentials 

In this case, we are mulling to evaluate the potential due to a point charge q, that is 
moving on a specified trajectory. Let �W (tr) is the position of charge q at time tr . We  
can determine the retarded time as

∣∣∣�r − �W (tr)
∣∣∣ = c(t − tr) (4.50) 

and

�R = �r − �W (tr) 

At any particular instant of time, only one point on the trajectory will be in 
communication with �r. We can show the same with the simple logic (Fig. 4.1). 

Let us assume that there are two points with the retarded times t1 and t2. Therefore, 
we can write 

R1 = c(t − t1) and R2 = c(t − t2)

Fig. 4.1 A point charge 
q traversing a certain 
trajectory 
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Hence, we write 

R1 − R2 = c(t2 − t1) (4.51) 

It shows that the average velocity of the charge q in the direction of �r is c, which 
violates special theory of relativity. The scalar retarded potential is given by 

V (�r, t) = 1 

4πε0

∫ [(
ρ
(�r′, tr

)
R

)]
dτ ′ (4.52) 

We cannot write the above equation as V (�r, t) = 1 
4πε0 

q 
R , because

∫ [
ρ
(�r′, tr

)]
dτ ′

is not equal to total charge of a particle, for total charge, ρ
(�r′, tr

)
we have to integrate 

over the entire distribution at one instant of time. But, tr = t − R c will not allow us to 
evaluate ρ at different times for different parts of the configuration. However, if the 
source is moving, this will give a distorted picture of the total charge. For an extended 
particle, no matter how much small, the retardation throws a factor, �V which is the 
velocity at a retarded time, because of motion as

∫ [
ρ
(�r′, tr

)]
dτ ′ = q 

1 − R̂ · �V 
c 

(4.53) 

We will prove Eq. (4.53) as follows.  

Proof This is the pure geometrical effect. A train approaching towards you looks a 
little longer than what really it is. In the interval chosen it takes light to travel the 
extra distance L′, meanwhile the train itself moves a distance L′ − L. (Fig. 4.2) 

L′

c 
= 

L′ − L 
V 

L′

c 
− 

L′

V 
= 

−L 

V 

L′
(
1 

c 
− 

1 

V

)
= −  

L 

V 
(4.54) 

which implies, 

L′ = 
L 

1 − V c 
(4.55)

So, approaching train appears longer by a factor of
(
1 − V c

)−1 
. By constraint a 

train going away may, therefore look shorter by a factor
(
1 + V c

)−1
(
As L

′
c = L−L′

V

)
. 

For instance, if the train velocity makes an angle θ with the line of sight,
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Fig. 4.2 Visualization of relativistic effects when an object approaches or recedes from an observer

L′ cos(θ ) 
C

= 
L′ − L 
V 

(4.56) 

L′ = L 

1 − V cos(θ ) 
c 

(4.57) 

The effect doesn’t distort the dimensions normal to the direction of motion. The 
apparent volume of the train τ ′ related to the actual volume τ , is therefore 

τ ′ = τ 
1 − R̂· �V 

c 

(4.58) 

Here, R̂ is the unit vector from the train to the observer. Whenever, you evaluate an 
integral of the type

∫ [
ρ
(�r′, tr

)]
dτ ′, the effective volume is modified by the factor(

1 − R̂· �V 
c

)
. This factor has no reference with regard to size of the particle. Therefore, 

it follows that 

V (�r, t) = 1 

4πε0 

qc(
Rc − �R · �V

) (4.59) 

where �V is the velocity at retarded time and �R is the distance from retarded position 
to field point. Since, the current density of a rigid object is ρ �V ,

�A(�r, t) = 
μ0 

4π

∫ [(
ρ
(�r′, tr

)
R

)
�V (tr)

]
dτ ′ (4.60)
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�A(�r, t) = 
μ0 

4π

�V 
R

∫
ρ
(�r′, tr

)
dτ ′

�A(�r, t) = 
μ0 

4π

�V 
R 

q 

1 − R̂· �V 
c

�A(�r, t) = 
μ0 

4π 
q �Vc(

Rc − �R · �V
)

�A(�r, t) = μ0ε0 �V 
⎛ 

⎝ 1 

4πε0 

qc(
Rc − �R · �V

)
⎞ 

⎠

�A(�r, t) = �V 
c2 
V (�r, t) 

(4.61) 

Here, V (�r, t) and �A(�r, t) are called as the Lineard–Wiechert potentials for a moving 
point charge. 

4.8 The Fields of a Moving Point Charge 

Fields �E and �B of a moving charge in arbitrary direction of motion are obtained by 
utilizing the following equations (Fig. 4.3).

�E = −�∇V − 
∂ �A 
∂t 

and �B = �∇ × �A 

Here, 

V (�r, t) = 1 

4πε0 

qc(
Rc − �R · �V

)

�A(�r, t) = �V 
c2 
V (�r, t)

�R = �r− �W (tr) and �V = �̇W (tr), both evaluated at retarded time and tr itself depends 
on

∣∣∣�r − �W (tr)
∣∣∣ = c(t − tr)
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Fig. 4.3 A point charge 
q moving along a specified 
trajectory

Let us begin:

�∇V = 
−qc 

4πε0 

1(
Rc − �R · �V

)2 �∇
(
Rc − �R · �V

)
(4.62)

�∇V = 
−c �∇R + �∇�R · �V 

4πε0

(
Rc − �R · �V

)2 (qc) (4.63) 

1st term of (4.63) can be written as:

�∇R = �∇c(t − tr) = −c �∇(tr) (4.64) 

2nd term of (4.63) can be written as:

�∇
(�R · �V

)
=
(�R · �∇

) �V +
( �V · �∇

)�R + �R ×
( �∇ × �V

)
+ �V ×

( �∇ ×  R
)

(4.65) 

The 2nd term in turn contains the four terms. We will evaluate its terms one by 
one. 

Term I:

(�R · �∇
) �V =

(
Rx 

∂ 
∂x 

+ Ry 
∂ 
∂y 

+ Rz 
∂ 
∂z

)
�V (tr)
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(�R · �∇
) �V = Rx 

d �V 
dtr 

∂tr 
∂x 

+ Ry 
d �V 
dtr 

∂tr 
∂y 

+ Rz 
d �V 
dtr 

∂tr 
∂z 

= 
d �V 
dtr

(
Rx 

∂tr 
∂x 

+ Ry 
∂tr 
∂y 

+ Rz 
∂tr 
∂z

)

(�R · �∇
) �V = �a

(�R · �∇(tr)
)

(4.66) 

where �a = �̇V ; acceleration at retarded time. 

Term II:
( �V · �∇

)�R =
( �V · �∇

)
�r −

( �V · �∇
) �W

( �V · �∇
)
�r =

(
Vx 

∂ 
∂x 

+ Vy 
∂ 
∂y 

+ Vz 
∂ 
∂z

)(
xî + yĵ + xẑ

)
( �V · �∇

)
�r = (

Vxî + Vyĵ + Vzẑ
) = �V

( �V · �∇
) �W (tr) =

(
Vx 

∂ 
∂x 

+ Vy 
∂ 
∂y 

+ Vz 
∂ 
∂z

)
�W (tr)

( �V · �∇
) �W (tr) = Vx 

d �W 

dtr 

∂tr 
∂x 

+ Vy 
d �W 

dtr 

∂tr 
∂y 

+ Vz 
d �W 

dtr 

∂tr 
∂z( �V · �∇

) �W (tr) = �V
( �V · �∇(tr)

)
(4.67) 

Term III:

�∇ × �V =
(

∂Vz 

∂y 
− 

∂Vy 

∂z

)
î +

(
∂Vx 

∂z 
− 

∂Vz 

∂x

)
ĵ +

(
∂Vy 

∂x 
− 

∂Vx 

∂y

)
k̂ 

=
(
dVz 

dtr 

∂tr 
∂y 

− 
dVy 

dtr 

∂tr 
∂z

)
î +

(
dVx 

dtr 

∂tr 
∂z 

− 
dVz 

dtr 

∂tr 
∂x

)
ĵ 

+
(
dVy 

dtr 

∂tr 
∂x 

− 
dVx 

dtr 

∂tr 
∂y

)
k̂ 

= −
[(

ay 
∂tr 
∂z 

− az 
∂tr 
∂y

)
î −

(
ax 

∂tr 
∂z 

− az 
∂tr 
∂x

)
ĵ +

(
ax 

∂tr 
∂y 

− ay 
∂tr 
∂x

)
k̂

]

�∇ × �V = −�a × �∇(tr) (4.68) 

Term IV:

�∇ × �R = �∇ ×
(
�r − �W (tr)

)

�∇ × �R = �∇ × �r − �∇ × �W (tr)

�∇ × �R = 0 − �∇ × �W
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We can solve �∇ × �W in the same way as we did for �∇ × �V for term III. Therefore, 
we can write:

�∇ × �W = −�V × �∇(tr) 

which implies

�∇ × �R = �V × �∇(tr) (4.69) 

Substitute Eqs. (4.66), (4.67), (4.68) and (4.69) in Eq.  (4.65), we obtain

�∇
(�R · �V

)
= �a

(�R · �∇(tr)
)

+ �V − �V
( �V · �∇(tr)

)

− �R ×
(
�a × �∇(tr)

)
+ �V ×

( �V × �∇(tr)
)

Using the identity

�A ×
(�B × �C

)
= �B

(�A · �C
)

− �C
(�A · �B

)

�R ×
(
�a × �∇(tr)

)
= �a

(�R · �∇(tr)
)

− �∇(tr)
(�R · �a

)

and

�V ×
( �V × �∇(tr)

)
= �V

( �V · �∇(tr)
)

− �∇(tr)
( �V · �V

)

Putting these, relations

�∇
(�R · �V

)
= �a

(�R · �∇(tr)
)

+ �V − �V
( �V · �∇(tr)

)
− �a

(�R · �∇(tr)
)

+ �∇(tr)
(�R · �a

)
+ �V

( �V · �∇(tr)
)

− �∇(tr)V 
2

�∇
(�R · �V

)
= �V +

(�R · �a − V 2
) �∇(tr) (4.70) 

Substitute Eqs. (4.64) and (4.70) in Eq.  (4.63), we get

�∇V = 
qc 

4πε0 

1(
Rc − �R · �V

)2
[ �V +

(
c2 − V 2 + �R · �a

) �∇(tr)
]

(4.71) 

Now, we have to evaluate �∇(tr) 

− c �∇(tr) = �∇R = �∇
√�R · �R = 1 

2
√�R · �R

�∇
(�R · �R

)
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− c �∇(tr) = 
1 

2R

{�R ×
( �∇ × �R

)
+ �R ×

( �∇ × �R
)

+
(�R · �∇

)�R +
(�R · �∇

)�R
}

− c �∇(tr) = 
1 

R

{(�R · �∇
)�R + �R ×

( �∇ × �R
)}

From the above equation, the term
(�R · �∇

)�R can be written as:
(�R · �∇

)�R =
(�R · �∇

)
�r −

(�R · �∇
) �W(�R · �∇

)�R = �R − �V
(�R · �∇(tr)

)

We have already evaluated, �∇ × �R = �V × �∇tr �∇ × �R = �V × �∇tr 
Put all these expressions in −c �∇(tr), we get 

− c �∇(tr) = 
1 

R

[�R − �V
(�R · �∇(tr) + �R ×

( �V × �∇tr
))]

�A ×
(�B × �C

)
= �B

(�A · �C
)

− �C
(�A · �B

)

− c �∇(tr) = 
1 

R

[�R − �V
(�R · �∇(tr)

)
+ �V

(�R · �∇tr
)

− �∇(tr)
(�R · �V

)]

− c �∇(tr) = 
1 

R

[�R − (�R · �V
) �∇(tr)

]

− c �∇(tr) = −�R 
Rc − �R · �V (4.72) 

Substitute Eq. (4.72) in Eq.  (4.71), we have

�∇V = 
qc 

4πε0 

1(
Rc − �R · �V

)2
[

�V +
(
c2 − V 2 + �R · �a

)( −�R 
Rc − �R · �V

)]

�∇V = 
qc 

4πε0 

1(
Rc − �R · �V

)3
[(

Rc − �R · �V
) �V −

(
c2 − V 2 + �R · �a

)�R
]

(4.73) 

Similarly, we can prove that 

∂ �A 
∂t 

= 1 

4πε0 

qc(
Rc − �R · �V

)3 

×
[(

Rc − �R · �V
)(

−�V + �R · �a 
c

)
+ 

R 

c

(
c2 − V 2 + �R · �a

) �V
]

(4.74) 

Combining these results in �E = −�∇V − ∂ �A 
∂t ,
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�E = 
−qc 

4πε0 

1(
Rc − �R · �V

)3 

×
[
−
(
c2 − V 2 + �R · �a

)�R +
(
Rc − �R · �V

)R�a 
c 

+ 
R 

c

(
c2 − V 2 + �R · �a

) �V
]

�E = 
qc 

4πε0 

1(
Rc − �R · �V

)3 

×
[(
c2 − V 2

)(�R − 
R 

c
�V
)

+ �R · �a
(

�R − 
R 

c
�V
)

−
(
Rc − �R. �V

)R�a 
c

]

�E = 
qc 

4πε0 

1(
Rc − �R · �V

)3 

×
[
R 

c

(
c2 − V 2

)(
c R̂ − �V

)
+ 

R 

c
�R · �a

(
c R̂ − �V

)
− �R

(
c R̂ − �V

)R�a 
c

]

If �u = c R̂ − �V �u = c R̂ − �V

�E = 
qc 

4πε0 

R 
c(�Rc − �R · �V

)3
[(
c2 − V 2

)�u + (�R · �a
)
�u −

(�R · �u
)
�a
]

�E = q 

4πε0 

R(�R · �u
)3
[(
c2 − V 2

)�u + �R × (�u × �a)
]

(4.75) 

This is the electric field due to the moving point charge. The first term in �E is the 
velocity-dependent field and is called as generalized Coulomb’s field. The 2nd term 
is known as the radiation field (accelerated dependent field). 

The magnetic field is given by:

�B = �∇ × �A
�B = �∇ ×

( �V 
c2 
V (�r, t)

)
= 

1 

c2

[
V
( �∇ × �V

)
− �V × �∇V

]

We have proved above that

�∇ × �V = −�a × �∇(tr) 

We also know that

�∇(tr) = −�R 
Rc − �R · �V
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Putting all these together in �∇ × �A, we get

�∇ × �A = 
−1 

c 

q 

4πε0 

R 

(�R · �u)3
�R ×

[(
c2 − V 2

) �V +
(�R · �a

) �V +
(�R · �u

)
�a
]

(4.76) 

Further, we have �u = c R̂ − �V , implies �V = c R̂ − �u. Again, making use of

�A ×
(�B × �C

)
= �B

(�A · �C
)

− �C
(�A · �B

)

�B(�r, t) = 
1 

c 
R̂ × �E(�r, t) (4.77) 

As we are conversant with the fact that the magnetic field due to a point charge 
is always perpendicular to the direction of electric field and to the vector from the 
retarded field, �E(�r, t). In case �V and �a both are zero, therefore, we can write from 
Eq. (4.75)

�E = 
q 

4πε0 

1 

R2 
R̂ (4.78) 

The second term of �E is inversely proportional to R, therefore, it is the dominant 
term at large distance. Similarly, we can calculate force on test charged q due to 
charge q in electrodynamics and is hence given by

�F = q
(�E + �V × �B

)
(4.79) 

which can be written as follows

�F = 
qQ 

4πε0 

R(�R · �u
)3 

×
[(

c2 − V 2
)�u + �R × (�u × �a) + �V 

c 
×
[
R̂ × {(

c2 − V 2
)�u} + �R × (�u × �a)

]]

(4.80) 

Example 4.11 Suppose you take a plastic ring of radius a and glue charge on it, so 
that the line charge density is λ0|sin(θ/2)|. Then you spin the loop about its axis at 
an angular velocity ω. Find the vector potentials at the center of the ring. 

Solution: 

We have a plastic ring of radius a with a line charge density given by: 

λ = λ0|sin(θ/2)|.
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The vector potential at the center is given by:

�A = 
μ0 

4π

∫
λ�vd�l 
r 

Since the ring is rotating at �ω, charge element at θ has velocity:

�v = ωa(−sinθ ̂x + cosθ ̂y) 
2π∫

0 

sin(θ/2)sin(θ + ωtr)d θ = 
1 

2 

2π∫

0

[
cos

(
θ 
2 

+ ωtr
)

− cos
(
3θ 
2 

+ ωtr
)]

dθ 

= 
1 

2

[
2sin

(
θ 
2 

+ ωtr
)

− 
2 

3 
sin

(
3θ 
2 

+ ωtr
)]∣∣∣∣

2π 

0 

= sin(π + ωtr) − sin(ωtr) − 
1 

3 
sin(3π + ωtr) + 

1 

3 
sin(ωtr) 

= −2sin(ωtr) + 
2 

3 
sin(ωtr) = −  

4 

3 
sin(ωtr) 

2π∫

0 

sin(θ/2)sin(θ + ωtr)d θ = 
1 

2 

2π∫

0

[
−sin

(
θ 
2 

+ ωtr
)

+ sin
(
3θ 
2 

+ ωtr
)]

d θ 

1 

2

[
2cos

(
θ 
2 

+ ωtr
)

− 
2 

3 
cos

(
3θ 
2 

+ ωtr
)]∣∣∣∣

2π 

0 

= cos(π + ωtr) − cos(ωtr) − 
1 

3 
cos(3π + ωtr) + 

1 

3 
cos(ωtr) 

= −2cos(ωtr) + 
2 

3 
cos(ωtr) = −  

4 

3 
cos(ωtr)

�A(t) = 
μ0λ0ωa 

4π

(
4 

3
[sin(ωtr)x̂ − cos(ωtr)ŷ]

)

�A(t) = 
μ0λ0ωa 

3π

{
sin

[
ω(t − 

a 

c 
)x̂ − cos

[
ω
(
t − 

a 

c

)
ŷ
]]}

Example 4.12 A particle of charge q moves in a circle of radius a at constant angular 
velocity ω. (Assume that the circle lies in the xy plane, centered at the origin, and 
at time (t = 0) the charge is at (a, 0), on the positive x-axis). Find the Lienard
-Wiechert potential for points on the z-axis. 

Solution: 

At a time t the charge is at �r(t) = a[cos(ωt)x̂ + sin(ωt)ŷ] and we can write

�v(t) = ωa[− sin(ωt)x̂ + cos(ωt)ŷ]
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Hence,

�r = zẑ − a[cos(ωtr)x̂ + sin(ωtr)ŷ] 

r2 = z2 + a2, and r = √
z2 + a2 

r̂ · �v = 
1 

r 
(r̂ · �v) 1 

r 
{−ωa2[− sin(ωtr) cos(ωtr) + sin(ωtr) cos(ωtr)]} = 0, 

so,

(
1 − 

r̂ · �v 
c

)
= 1 

Therefore, 

V (z, t) = 1 

4πε0 

q √
z2 + a2 

, �A(z, t) = qωa 

4πε0c2 
√
z2 + a2 

[− sin(ωtr)x̂ + cos(ωtr)ŷ]. 

Where, 

tr = t −
√
z2 + a2 
c 

. 

Example 4.13 A point charge q with velocity �V = V î and acceleration �a = aî. A  
test charge Q is placed at �r = xî + yĵ + z k̂. Find the force on the charge Q. 

Solution: 

The electric field due to a moving charge is

�E = 
qc 

4πε0 

R 
c(�Rc − �R · �V

)3
[(
c2 − V 2

)�u + (�R · �a
)
�u −

(�R · �u
)
�a
]

�R = �r − �W (tr) is the displacement vector from the retarded position �W (tr) of the 
moving charge to the observation point �r.

�u = c R̂ − �V with R̂ = �R 
R . 

The magnetic field is given by �W (tr) = Vtr î

�R = (x − Vtr)î + yĵ + z k̂ 

R =
√

(x − Vtr)2 + y2 + z2 

The unit vector R̂ becomes
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R̂ = (x − Vtr)î + yĵ + z k̂ √
(x − Vtr)2 + y2 + z2 

The unit vector �u = c R̂ −V î. The magnetic due to the moving charge is given by

�B(�r, t) = 
1 

c 
R̂ × �E(�r, t)

�F = Q
(�E + �V × �B

)

�F = 

⎛ 

⎜⎝ 
qQ 

4πε0 

R(
R − �R · �V /c2

)3
[(
c2 − V 2

)�u + �u × (�u × �a)]
⎞ 

⎟⎠ 

Simplifying this force requires evaluating �u and the terms
(
c2 − V 2

)�u and �u × 
(�u × �a) explicitly, along with the identity.

�u × (�u × �a) = (�u · �a)�u − �a(�u · �u) 

where �u · �u = c2 − V 2. Therefore, the expression for the force �F on the test charge 
Q due to a moving charge q is:

�F = 

⎛ 

⎜⎝ 
qQ 

4πε0 

1(
R − �R · �V /c2

)3
[(
c2 − V 2

)�u + (�u · �a)�u − �a(c2 − V 2
)]
⎞ 

⎟⎠ 

Unsolved Problems 

Problem 4.1 An atom of atomic number Z can be modelled as a point charge 
surrounded by a rigid uniformly negatively charged solid sphere of radius R. The  
electric polarizability α of this system is defined as α = PE 

E . Where PE is the dipole 
moment induced on application of electric field E which is small compared to the 
binding electric field inside the atom. Calculate the value of α. 

Ans. 4πε0R3. 

Problem 4.2 A scalar potential V = V0e−βr and vector potential �A = A0e−βr r̂ are 
defined for a region of space, where β = 1 m−1. 

(a) Check if the Lorentz gauge condition �∇ · �A + 1 c2 
∂V 
∂t = 0 holds. 

(b) If not apply a gauge transformation to make V and �A satisfy the Lorentz gauge. 
Problem 4.3 Consider a cylindrical shell of radius R and height h centred along the 
z-axis carrying a uniform density �K = K φ̂. Calculate the vector potential �A at a point 
on the z-axis at a distance z0 from the centre of the shell. 

Ans. μ0KRh 

2
√

Z2 
0+R2 

ẑ.
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Problem 4.4 Consider a static potential configuration where V (�r) = q 
4πε0r 

and
�A = �A0 a constant vector potential. Determine a gauge transformation that changes
�A to zero while leaving the electric and magnetic fields unchanged. 

Ans. �A′ = 0,V ′ = 0. 

Problem 4.5 Consider a circular loop of radius a carrying an oscillating current 
I
(
r′) = I0 cos

(
ωt′

)
. The loop lies in the xy-plane centred at the origin. Find the 

retarded potential �A(�r, t) at a point on the z-axis a distance z from the loop. 

Ans. μ0I0a 
4π 

√
z2+R2 cos

(
ω
(
t − 

√
z2+R2 

c

))
φ̂. 

Problem 4.6 A point charge q moves with a constant velocity �v along the x-axis. The 
position of the charge at any time is Wx(t) = vt. Calculate the electric field �E(�r, t) 
at an observation point �r = (

xî + yĵ + z k̂
)
. Using the Lienard-Wiechert formula for 

the electric field of a moving charge. 
Ans. �E = q 

4πε0 

R 

(Rc−�R· �V )3
[(
c2 − V 2

)(
c R̂ − �v)]. 

Problem 4.7 For a continuous current density �J (�r′), derive the multipole expansion 
for the vector potential �A(�r) at a point �r far from the current distribution. 

Ans. �A(�r) = μ0 

4π

∫ �J(�r′)
|�r−�r′| d

3�r′. 

Problem 4.8 Show that the Coulomb gauge condition �∇ · �A = 0 does not uniquely 
determine �A. 
Problem 4.9 Using the retarded potentials, derive the expressions for the scaler 
potential V and the vector potential �A due to a continuous charge density ρ(�r′, t

)
and 

the current density �J (�r′). 
Problem 4.10 Derive the expressions for the scalar and vector potentials in the 
Coulomb’s gauge for a time-dependent charge distribution. 

4.9 Summary 

• Introduction to Magnetic Phenomena: We explored the transition from electro-
static to magnetostatic fields, emphasizing that magnetic fields arise from currents, 
contrasting with electric fields from charges. Potential formulations simplify 
theoretical understanding, but magnetic fields are more practical for measurement. 

• Vector Potential: Defined magnetic fields using the vector potential �A through the 
Biot-Savart law, which enables magnetic field calculation from current density. 
This approach parallels electrostatic potential V, aiding theoretical analysis and 
simplifying calculations.



4.9 Summary 161

• Potentials and Fields Formulations in Electrodynamics: Maxwell’s equations 
extend to dynamic fields, linking electric and magnetic fields with time variations. 
Notably, electric and magnetic fields are redefined: �E = −�∇V − ∂ �A 

∂t and
�B = �∇×�A. 

• Gauge Transformations: Introduced gauge freedom in electrodynamics, 
allowing modifications of V and �A while preserving physical fields �E and �B. Key  
gauges are the Coulomb gauge (for static problems) and Lorentz gauge (useful in 
relativistic contexts). 

• Coulomb’s Gauge: Focussed on simplifying scalar potential V in static cases, 
yielding Poisson’s equation, a foundational equation in electrostatics for static 
charge distributions, while vector potential �A requires more complex calculations. 

• Lorentz Gauge: Treats V and �A symmetrically, suitable for special relativity and 
representing potentials in inhomogeneous wave equations. The d’Alembertian 
operator unifies the theory and simplifies solutions in four-dimensional spacetime. 

• Continuous Charge Distributions and Retarded Potentials: Retarded poten-
tials are introduced for time-varying sources, accounting for the finite speed 
of electromagnetic propagation. These potentials adjust to dynamic sources, 
generalizing Coulomb’s and Biot-Savart laws. 

• Jefimenko’s Equations: Derived solutions for electric and magnetic fields from 
time-dependent charges and currents, extending static field laws to dynamic 
contexts and enabling the calculation of fields influenced by source time variations. 

• Lienard-Wiechert Potentials: Calculated fields for moving point charges, which 
factor in both velocity and acceleration, giving insight into radiated fields at large 
distances and supporting antenna theory. 

• Fields of a Moving Point Charge: Developed expressions for electric and 
magnetic fields due to a point charge in motion. The electric field includes a 
velocity-dependent Coulomb component and an acceleration-dependent radia-
tion component, while the magnetic field aligns perpendicularly to the electric 
field. 

• Each topic builds a foundation in understanding magnetic fields through vector 
potentials, gauge choices and practical applications, with examples illustrating 
key concepts and calculations in electrodynamics.



Chapter 5 
Relativistic Electrodynamics 

Abstract In this chapter tensors extend the concept of vectors and serve as a 
foundational framework for analyzing physical phenomena across classical and 
relativistic contexts. Central to relativistic physics are Lorentz-invariant quantities, 
such as spacetime intervals, energy–momentum relations and Maxwell’s equations, 
ensuring consistency across inertial frames. The four-dimensional dot product, 
utilizing the metric tensor gμν , generalizes scalar products to 4D spacetime, 
underpinning key relations like E2 = p2c2 + m2c4, which link energy, momentum 
and mass. Relativistic dynamics are governed by entities like four-velocity, four-
acceleration, four-momentum and four-force, which integrate classical mechanics 
with relativistic corrections. Transformations of electric and magnetic fields between 
inertial frames illustrate the consistency of physical laws, while phenomena such as 
Lorentz contraction and time dilation underscore relativistic effects at high veloci-
ties. Lorentz invariance emerges as a unifying principle, maintaining the constancy 
of spacetime intervals, field relationships and invariant magnitudes of velocity 
and momentum four-vectors. The Lorentz gauge and continuity equation provide 
elegant representations of charge conservation and potential dynamics in spacetime. 
Relativistic kinetic energy relations integrate mass-energy equivalence, connecting 
classical energy concepts with relativistic formulations. This chapter bridges the 
gap between classical mechanics and special relativity, offering mathematical 
tools and insights for studying relativistic electrodynamic systems. It emphasizes 
the geometric and physical coherence of relativistic transformations, essential for 
understanding high-speed phenomena and electromagnetic field interactions. 

Keywords Lorentz-invariant quantities · Metric tensor · Relativistic 
electrodynamic systems
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5.1 Introduction 

The incorporation of relativistic corrections into electrodynamics is essential because 
classical formulations fail to accurately describe electromagnetic phenomena at 
velocities approaching the speed of light. Without these corrections, key predic-
tions about particle behaviour, field transformations, and radiation effects become 
increasingly inaccurate as speeds rise. Relativity provides the necessary framework 
to reconcile electromagnetism with the principles of special relativity, ensuring 
consistency across all inertial reference frames. This unification reveals how electric 
and magnetic fields fundamentally transform into one another when observed from 
different moving perspectives. To properly incorporate relativistic corrections into 
electrodynamics, we must formulate the theory using tensors. 

Tensors can be dubbed as logical and natural generalization of vectors. The use 
of vectors is most profound in the mathematical study of wide range of physical 
phenomena. In a similar fashion, tensor analysis is widely applicable to various 
branches of physics. These applications can be broadly divided in to two main cate-
gories, viz., applications in non-relativistic physics and applications in the theo-
ries of relativity. In this chapter, we will provide a general definition of tensors 
followed by the algebra of tensors. Further, we will provide a brief description of the 
transformation laws of tensors. 

5.2 Lorentz-Invariant Quantities 

As discussed in Chap. 1, a vector is generally defined as follows:

�a = a1x̂ + a2ŷ + a3ẑ (5.1) 

The dot product of above vector with itself is, therefore, written as under

�a · �a = a2 1 + a2 2 + a2 3 (5.2) 

It is a scalar quantity. However, if we have two different vectors �a and �b, we can 
define the dot product as follows:

�a · �b = a1b1 + a2b2 + a3b3 (5.3) 

Or, in more compact notation we can illustrate above result as follows: 

ai · bi = a1b1 + a2b2 + a3b3 (5.4) 

where ai is the covariant vector and bi is the contravariant vector.
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In case of Euclidean 3D space there is no distinction between these two vectors. 
Therefore, we can write 

ai = (a1, a2, a3) 
ai = (a1, a2, a3) 

(5.5) 

Hence, Eq. (5.2) can be written as follows:

�a · �a = aiai = a1a1 + a2a2 + a3a3 = a2 1 + a2 2 + a3 3 (5.6) 

Of course, there is a plus sign between the components. 
In Euclidian space, we have 

r2 = x2 + y2 + z2 (5.7) 

which can be written as under 

r2 = x2 1 + x2 2 + x2 3 (5.8) 

which resembles the dot product of a vector with itself. Thus, we can write it as under 

r2 = xixi = x1x1 + x2x2 + x3x3 (5.9) 

where range of i is equal to the dimensionality of space. 
In Lorentz transformation, we know a quantity is Lorentz invariant when 

(ct)2 − r2 = 0 (5.10) 

Since 0 is scalar, therefore, its value remains same in all inertial frames of 
reference. 

If we measure only r2 in frame S, and r
′2 in frame S ′ then the value of r2 and r′2 

will be different in different inertial frames of references. On the other hand, if we 
measure (ct)2 − r2 its value is same in all inertial frames of references, i.e., 

r′2 �= r2 not Lorentz invariant 

but 

(ct)2 − r2 Lorentz invariant 

Now we know that 

(ct)2 − r2 = 0 
or
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(ct)2 − x2 − y2 − z2 = 0 (5.11) 

The Lorentz invariant quantity mentioned in Eq. (5.11) has + sign on first term 
but all other terms have a – sign. But a dot product generates only + signs. In 4D 
Euclidean space: 

xi · xi = x1x1 + x2x2 + x3x3 + x4x4 (5.12) 

By summation convention we mean that if a suffix occurs twice in a term, once in 
the upper position and once in the lower position, then that suffix implies sum over 
defined range. If the range is not given, then it is to be noted that the range is from 1 
to 4. 

5.3 Four-Dimensional (4D) Dot Product 

In order to write Eq. (5.11) as 4D dot product we use matrix tensor gμv

(
ct x y z

)

⎛ 

⎜⎜ 
⎝ 

1  0 0 0  
0 −1 0 0  
0 0  −1 0  
0 0 0  −1 

⎞ 

⎟⎟ 
⎠ = (ct − x − y − z) (5.13) 

By following Einstein’s summation convention, the above equation in compact 
notation can be written as 

xμ gμv = xv (5.14) 

where X μ = xμ = {ct, x, y, z} is the contravariant vector with four components, 
whereas, Xμ = xμ = {ct, −x, −y, −z} is the covariant vector with four components. 
The quantity gμv is called the metric tensor. It is also called a fundamental tensor. 
It is a second rank covariant symmetric tensor. Thus, Eq. (5.11) can be written as 
follows: 

X μ · Xμ = (ct)2 − x2 − y2 − z2 (5.15) 

Example 5.1 Consider two events in spacetime where the position and time coor-
dinates of the events in the frame S are (t1, x1, y1, z1) and (t2, x2, y2, z2). Define the 
spacetime interval S2 between these events by the expression. 

S2 = c2 (t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 

Prove that S2 is Lorentz invariant.
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Solution: 

The space time interval in the given frame S is 

S2 = c2 (t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 

Let �t = (t2 − t1), �x = (x2 − x1), �y = (y2 − y1), �z = (z2 − z1) 

S2 = c2 (�t)2 − (�x)2 − (�y)2 − (�z)2 

Consider the Lorentz transformation along x-axis where, v is the velocity between 
S and S ′. The transformation equations are 

t′ = γ
(
t − 

vx 

c2

)

x′ = γ (x − vt) 

y′ = y 

z′ = z 

Using the difference in coordinates, the time interval �t′ and the spatial interval
�x′ in the frame S ′ become

�t′ = γ
(

�t − 
v�x 

c2

)

�x′ = γ (�x − v�t)

�y′ = �y

�z′ = �z 

S ′ = c2
(
�t′

)2 − (
�x′)2 − (

�y′)2 − (
�z′)2 

Here, γ 2
(
c2 − v2

) = c2 

S′ =  c2 (�t)2 − (�x)2 − (�y)2 − (�z)2 

Thus, S2 is Lorentz invariant.
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Example 5.2 Given two four vectors in spacetime Aμ = (
A0, A1, A2, A3

)
and Bμ =(

B0, B1, B2, B3
)
where A0 = ctA, A1 = xA, A2 = yA, A3 = zA and similarly for Bμ. 

Define the four-dimensional dot product. 

AμB
μ = A0 B0 − A1 B1 − A2 B2 − A3 B3 

Show that this dot product remains invariant under Lorentz transformation. 

Solution: 

From the concept of four vectors, we write four-vector dot product as follows: 

AμB
μ = A0 B0 − A1 B1 − A2 B2 − A3 B3 

for a Lorentz transformation along the x-axis. Therefore, the transformation equations 
for A0 and A1 are 

A0′ = γ
(
A0 − 

vA1 

c

)

A1′ = γ
(
A1 − vA0

)

with A2′ = A2 and A3′ = A3 

Similarly, for Bμ 

B0′ = γ
(
B0 − 

vB1 

c

)

B1′ = γ
(
B1 − vB0

)

with B2′ = B2 and B3′ = B3 

Using the Lorentz transformation, the dot product of Aμ′Bμ′
in the S ′ frame is 

Aμ′Bμ′ = A0′
B0′ − A1′

B1′ − A2′
B2′ − A3′

B3′

Substitute the transformed components 

Aμ′Bμ′ = γ 2
(
A0 − 

vA1 

c

)(
B0 − 

vB1 

c

)
− γ 2

(
A1 − vA0

)(
B1 − vB0

)

Using γ 2
(
1 − v2 c2

)
= 1. 

which substantiates that the product AμBμ is Lorentz invariant.
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5.4 The Divergence 

The divergence of any vector function is defined as follows:

�∇ · �f =
(

d 

dx 
, 
d 

dy 
, 
d 

dz

)
�f (5.16) 

This represents the rate at which a vector field spreads out from a given point in 
3D space. 

Thus, to extend it into 4D Minkowski space. 
In a compact notation, Eq. (5.16) can be written as

�∇ · �f = 
df μ 

dxμ (5.17) 

If we follow the summation convention, the above equation is generalized as 
follows:

�∇ · �f = ∂μf 
μ (5.18) 

where 

∂μ = 
d 

dxμ =
(
1 

c 

d 

d(ct) 
, 

d 

d(x) 
, 

d 

d(y) 
, 

d 

d(z)

)
(5.19) 

which is also called a covariant derivative 

∂μ =
(
1 

c 

d 

dt 
, 
d 

dx 
, 
d 

dy 
, 
d 

dz

)

and 

∂μ = 
d 

dxμ 
=

(
d 

d (ct) 
, 

d 

d (−x) 
, 

d 

d(−y) 
, 

d 

d (−z)

)
(5.20) 

which is called the contravariant derivative. 

Example 5.3 Consider a 4D vector field Fμ = (
F0, F1, F2, F3

)
in the Minkowski 

space, where F0 = φ (a scalar field) and Fi = �A (a 3D vector field with components 
Ax, Ay, Az). Show that the divergence ∂μFμ is Lorentz invariant. 

Solution: 

The divergence of Fμ in 4D Minkowski space is given by 

∂μF
μ = 

∂F0 

∂(ct) 
+ 

∂F1 

∂x 
+ 

∂F2 

∂y 
+ 

∂F3 

∂z



170 5 Relativistic Electrodynamics

Let F0 = φ a time-dependent scalar field and F1 = Ax, F2 = Ay and F3 = Az 

representing the spatial components of the vector �A. 

∂μF
μ = ∂φ 

∂(ct) 
+ �∇ · �A 

Using Lorentz transformation in the x direction, we have 

F0′ = γ
(
F0 − 

vF1 

c

)

F1′ = γ
(
F1 − vF0

)

with F2′ = F2 and F3′ = F3 

The transformed derivatives are 

∂0′ = γ
(
∂0 + 

v 

c 
∂1

)
, ∂1′ = γ

(
∂1 + 

v 

c 
∂0

)

∂2′ = ∂2 and ∂3′ = ∂3 

∂μ′Fμ′ = ∂0′F0′ + ∂1′F1′ + ∂2′F2′ + ∂3′F3′

Expanding each term using the transformation 

∂μ′Fμ′ = γ
(

∂0F
0 − 

v∂1F1 

c 
− 

v∂0F1 

c 
+ 

v2∂1F1 

c2

)
+ ∂1F1 + ∂2F2 + ∂3F3 

Using γ 2
(
1 − v2 c2

)
= 1 = 1 

∂μ′Fμ′ = (
∂0F

0 + ∂1F1 + ∂2F2 + ∂3F3
)

5.5 Energy–Momentum Relation 

The energy–momentum relation is given by 

E2 = p2 c2 + m2 c4 (5.21) 

The above relation is true for all particles in all inertial reference frames. The 
relativistic energy, E of a particle of rest mass m and momentum p is given by
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E2 

c2 
= p2 + m2 c2 (5.22)

(
E 

c

)2 

−
(
p2 x + p2 y + p2 z

)
= (mc)2 (5.23) 

This result is tremendously useful. It helps us to calculate E provided we know p 
or calculate p provided we know E, without ever been knowing the velocity. From 
this expression we can recognize that: 

X μ =
(
E 

C 
, px, py, pz

)
and Xμ =

(
E 

C 
, −px, −py, −pz

)

Thus Eq. (5.23) can be written as follows: 

XμX 
μ = (mc)2 (5.24) 

5.6 The Continuity Equation 

The conservation of charge demands that the charge density at any arbitrary point 
in space is related to the current density in that region by a continuity equation as 
follows:

�∇ · �J + 
dρ 
dt 

= 0 (5.25) 

This equation has immense physical significance. One of the important physical 
interpretations of this equation is that any decrease in charge inside a small volume 
with time must correspond to a flow of charge out through the surface encompassing 
that volume. This equation assumes the nice compact form when written in terms of 
J μ. 

1 

c 

d(ct) 
dt 

+ �∇ · �J = 0 (5.26) 

1 

c 

d (ct) 
dt

+ 
dJx 
dx 

+ 
dJy 
dy 

+ 
dJz 
dz 

= 0 (5.27) 

Then, the corresponding current density 4-vector are 

X μ = (
ct, Jx, Jy, Jz

) = J μ and Xμ =
(
ct, −Jx, −Jy, −Jz

) = Jμ 

In compact form we write Eq. (5.27) as follows:



172 5 Relativistic Electrodynamics

∂μJ 
μ = 0 (5.28) 

The summation over µ is implied. This equation substantiates that the current 
density four-vector is divergenceless. 

5.7 The Lorentz Gauge 

The Coulomb Gauge is stated as 
−→∇ · �A = 0. 

It does not possess any time component; therefore, we can’t define a 4-vector for 
it and hence we don’t have any concept of Lorentz invariance for it. 

The Lorentz Gauge is defined as 

1 

c2 
dφ 
dt 

+ �∇ · �A = 0 (5.29) 

1 

c 

d 

dt

(
φ 
c

)
+ 

dAx 

dx 
+ 

dAy 

dy 
+ 

dAz 

dz 
= 0 (5.30) 

The physical dimensions of
[

φ 
c

] ∼ �A, i.e., of magnetic vector potential. 
So, 

X μ =
(

φ 
c 
, Ax, Ay, Az

)
= Aμ 

X μ =
(

φ 
c 
, −Ax, −Ay, −Az

)
= Aμ and ∂μ = 

d 

dxμ 

Therefore, Eq. (5.30) can be written in compact notation as follows: 

∂µA
µ = 0 (5.31) 

As long as Lorentz gauge is satisfied, the potentials will satisfy the inhomogeneous 
wave equation, with the source term on the right side. 

5.8 The Lorentz Transformation 

Lorentz transformation provides us an idea of relating the coordinates of an event 
in two inertial frames of reference. An event is a physical process that occurs at a 
specified location (x, y, z) and at a particular instant of time (t). Let (x, y, z, t) be the  
coordinates of an event E in an inertial frame of reference S and let the coordinates 
of the same event in other inertial frame of reference S be (x, y, z, t).
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The Lorentz transformation equations of an event in two inertial reference frames 
S and S having relative motion between them are given as 

x = γ
(
x − 

v 

c 
ct

)

y = y 
Z = z 

ct = γ
(
ct − 

v 

c 
x
)

(5.32) 

For simplicity, we denote 

x → x1 , y → x2 , z → x3 , ct → x4 

x → x1 , y → x2 , z → x3 , ct → x0 . 

The set of Eqs. (5.32) can be re-written in matrix form as follows 

⎛ 

⎜⎜ 
⎝ 

ct 
x 
y 
z 

⎞ 

⎟⎟ 
⎠ = 

⎛ 

⎜⎜ 
⎝ 

γ −γ v c 0 0  
−γ v c γ 0 0  
0 0 1  0  
0 0 0  1  

⎞ 

⎟⎟ 
⎠ 

⎛ 

⎜⎜ 
⎝ 

ct 
x 
y 
z 

⎞ 

⎟⎟ 
⎠ 

⎛ 

⎜⎜ 
⎝ 

x0 

x1 

x2 

x3 

⎞ 

⎟⎟ 
⎠ = 

⎛ 

⎜⎜ 
⎝ 

γ −γ v c 0 0  
−γ v c γ 0 0  
0 0 1  0  
0 0 0  1  

⎞ 

⎟⎟ 
⎠ 

⎛ 

⎜⎜ 
⎝ 

x0 

x1 

x2 

x3 

⎞ 

⎟⎟ 
⎠ 

(5.33) 

In compact notation, we write 

xμ = 
3∑

v=0 

λμ 
v x

v (5.34) 

where λ μ 
v is the Lorentz transformation matrix. The superscript, μ labels the rows and 

the subscript, and ν labels the columns of the matrix. One of the important property of 
writing equations in more abstract form is that these can be generalized to a situation 
where the relative motion is not along any common axis. The matrix λ would be more 
complicated but the structure of Eq. (5.34) remains unaltered. It is important to note 
here that the geometrical interpretation of Lorentz transformation is that it simply 
indicates the rotation in four-dimensional space. 

For a particular case of transformation, where μ = 0, the Eq. (5.34) would yield
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x0 = 
3∑

v=0 

λ0 
vx

v 

= λ0 
0x

0 + λ0 
1x

1 + λ0 
2x

2 + λ0 
3x

3 

= γ (ct) +
(
−γ 

v 

c

)
x + 0(y) + 0(x) 

ct = γ
(
ct − 

v 

c 
x
)

Example 5.4 Given two four vectors in spacetime Aμ = (
A0, A1, A2, A3

)
and Bμ =(

B0, B1, B2, B3
)
where A0 = ctA, A1 = xA, A2 = yA, A3 = zA Define the four-

dimensional dot product using the metric tensor gμν . 

AμB
μ = gμνA

μ Bν 

Show that this dot product AμBμ remains invariant under Lorentz transformation. 

Solution: 

The metric tensor gμν in Minkowski space is defined by 

gμν = 

⎛ 

⎜⎜ 
⎝ 

1 0 0 0  
0 −1 0 0  
0 0  −1 0  
0 0 0  −1 

⎞ 

⎟⎟ 
⎠ 

Thus, the 4D dot product of Aμ and Bμ is 

AμB
μ = gμνA

μ Bν = A0 B0 − A1 B1 − A2 B2 − A3 B3 

AμB
μ = ctActB − xAxB − yAyB − zAzB 

Using the Lorentz transformation along the x-axis with velocity v, the transfor-
mations for A0 and A1 are 

A0′ = γ
(
A0 − 

vA1 

c

)

A1′ = γ
(
A1 − vA0

)

where γ = 1 √
1− v2 

c2 

A2′ = A2 and A3′ = A3 

Similarly, for Bμ 

B0′ = γ
(
B0 − 

vB1 

c

)
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B1′ = γ
(
B1 − vB0

)

with B2′ = B2 and B3′ = B3 

Aμ′Bμ′ = gμνA
μ′Bν ′

Aμ′Bμ′ = A0′B0′ −  A1′B1′ −  A2′B2′ −  A3′B3′

Substitute the transformed components 

Aμ′Bμ′ = γ 2
(
A0 − 

vA1 

c

)(
B0 − 

vB1 

c

)
− γ 2

(
A1 − vA0

)(
B1 − vB0

)

Using γ 2
(
1 − v2 c2

)
= 1 = 1 

Aμ′Bμ′ = AμB
μ = A0 B0 − A1 B1 − A2 B2 − A3 B3 

5.9 Four-Vectors in Special Relativity 

Tensors form the cornerstone of mathematical formulation of physical laws. Classical 
physics is concerned with the invariance of physical quantities under Galilean trans-
formation and such transformations assume that the physical laws appear to be same 
to all observers which are stationary relative to each other. However, in the realm of 
theory of special relativity, it is widely known that the physical laws appear differ-
ently to observers that are in relative motion to each other, nonetheless, the physical 
laws must remain the same to all observers. The measurements of space and time 
intervals between two events made by one observer may differ from those of another 
observer, if they are in relative motion to each other. Transformation laws which 
relate the coordinates of one observer with those of another observer in uniform rela-
tive motion with respect to the first are referred as Lorentz transformations and these 
transformation laws include uniform relative motion in addition to translation and 
rotation. Thus, the notion of scalars and vectors must change accordingly. Further, 
for the mathematical description of physical laws, we cannot use those quantities 
that are not invariant. However, if we extend the set of transformations from Galilean 
to Lorentz transformations, we must incorporate all the inertial frames of reference. 
All the physical quantities that we come across in classical physics do not possess 
invariant magnitude and direction. The same concept, therefore, applies to scalar 
quantities. Thus, in order to be consistent with the theory of special relativity, we 
have to form the sets of four components that transform according to specified tensor 
laws under Lorentz transformation. In particular, the ordered sets of four elements
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transforming according to vector laws have been given special name of four-vectors 
or world vectors. It is pertinent to note here that these are not only four-dimensional 
vectors but they are the vectors of the Minkowski space, i.e., vectors possessing 
invariance under Lorentz transformation. A few such vectors are briefly discussed 
as follows: 

5.9.1 Four Vector 

We are conversant with the idea of four-dimensional space and hence it is logical to 
extend ordinary vector analysis (3 vectors) to four dimensions (i.e., 4 vectors). These 
four-dimensional vectors are four vectors or world vectors. A four-vector is a four-
dimensional quantity that undergoes Lorentz transformation from one inertial frame 
to another inertial frame. It is worthwhile to mention here that the four-dimensional 
coordinates are orthogonal. We now define a contravariant 4-vector as any set of four 
components 

aμ = (
a0 , a1 , a2 , a3

)

A four vector maintains its form under Lorentz transformation. The transformation 
is given by 

āμ = 
3∑

v=0 

λμ 
v a

v (5.35) 

Four vectors are useful in expressing various physical quantities that are conserved 
in relativistic interactions, such as energy-momentum 4-vector and 4-current. 

The length of the 4-vector remains invariant under Lorentz transformation which 
is demonstrated by dot product (inner product or Minkowski inner product). 

aμ aμ =
(
a0

)2 − (
a1

)2 − (
a2

)2 − (
a3

)2 
(5.36) 

This property is crucial in relativistic physics, ensuring that quantities such as 
spacetime intervals and the energy-momentum 4-vector maintain their physical 
meaning in all inertial frames.



5.9 Four-Vectors in Special Relativity 177

5.9.2 The Velocity Four-Vector 

The velocity 4-vector is defined as 

U μ = 
dxμ 

dτ 
=

(
dx0 

dτ 
, 
dx1 

dτ 
, 
dx2 

dτ 
, 
dx3 

dτ

)
(5.37) 

The infinitesimal displacement is given by 

dx̄μ = 
3∑

v=0 

λμ 
v dx

v (5.38) 

Equation (5.37) is obtained by differentiating xμ with respect to the proper time but 
we want to calculate the velocity with respect to the time of an observer. Therefore, 
we require transformation equations that relate proper time with the observer’s time. 
The time dilation expression is given by 

dt = γ dτ (5.39) 

Thus, Eq. (5.37) can be written as follows: 

U μ =
(

γ 
cdt 

dt 
, γ  

dx 

dt 
, γ  

dy 

dt 
, γ  

dz 

dt

)

U μ = γ
(
c, vx, vy, vz

)

It is evident from this expression that the three components of the four-velocity 
are the three components of the three-vector velocity times γ. 

U μ = (γ c, γ �v) (5.40) 

Similarly, we can write 

Uμ = (γ c, −γ �v) (5.41) 

It is worthwhile to mention here that the norm—the magnitude or vector invariant 
length—of the four-velocity is not only unchanged but is same for all physical objects 
(matter plus energy). 

Therefore, we have 

U μ Uμ = (γ c)2 − (γ v)2 = γ
(
c2 − v2

) = 
c2 − v2 

c2 − v2 
× c2 

U μ Uμ = c2 = constant (5.42) 

which is the invariant quantity under Lorentz transformation.
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5.9.3 The Acceleration Four-Vector 

The acceleration 4-vector is established by differentiating velocity four-vector with 
respect to the proper time τ and is, therefore, given by 

aμ = 
duμ 

dτ 
= 

d 

dτ

(
dxμ 

dτ

)

= 
d 

dτ

(
γ c, γ  vx, γ  vy, γ  vz

)

= γ 
d 

dτ

(
γ c, γ  vx, γ  vy, γ  vz

)

= γ
(
c 
dγ 
dt 

, γ  
dvx 
dt 

, vx 
dγ 
dt 

, γ  
dvy 
dt 

, vy 
dγ 
dt 

, γ  
dvz 
dt 

, vz 
dγ 
dt

)
(5.43) 

aμ = γ
(
c 
dγ 
dt 

, γ  
d�v 
dt 

, �v dγ 
dt

)
(5.44) 

The acceleration 4-vector has a component that is parallel to the acceleration 
three-vector and a part which is parallel to the velocity three-vector. 

5.9.4 The Momentum Four-Vector 

The general extension of 3-vector momentum to 4-vector momentum follows from 
the transformation analysis and from the notion of how masses are transformed under 
such transformations. The 4-vector momentum is generally written as follows: 

Pμ = m0u
μ = m0γ

(
c, vx, vy, vz

)

= m0γ (c, �v) (5.45) 

P0 = 
mc2 

c 
= 

E 

c 
(5.46) 

P1 = m0γ vx = m0 √
1 − v2 c2 

vx = mvx = Px (5.47) 

Similarly, we can prove that P2 = Py and P3 = PzP3 = Pz 

Thus, 

Fμ = 
dpμ 

dτ 
= 

dpμ 

dt 

dt 

dτ 
= γ 

dpμ 

dt 
(5.48)



5.10 The Lorentz Contraction and Time Dilation 179

It is evident from the above expression that the three spatial components are just 
the Newtonian 3-momentum where the mass of the particle has been replaced by 
m0γ . 

5.9.5 The Force Four-Vector 

The force-four vector is defined by the following expression 

Fμ = 
dpμ 

dτ 
= 

dpμ 

dt 

dt 

dτ 
= γ 

dpμ 

dt 
(5.49) 

However, momentum 4-vector is defined as pμ = (mc, �p) 
Therefore, Eq. (5.49) can be written as follows: 

Fμ = γ 
d 

dt 
(mc, �p) 

= γ
(
c 
dm 

dt 
, 
d�p 
dt

)

=
(

γ c 
dm 

dt 
, γ  −→F

)

Fμ = γ
(
c 
dm 

dt 
, �F

)

(5.50) 

It is worth noting that four-force could be time-like, space-like and null. If we get 
a frame of reference where the three-force acting on a particle is zero, however, the 
particle is interchanging internal energy with the surroundings, then the four-force 
is time-like. Otherwise, it is space-like. 

5.10 The Lorentz Contraction and Time Dilation 

According to theory of special relativity, the length of an object appears shorter only 
along the direction of its motion. The volume element in frame s is given by dv = 
dxdydz. 

For an observer in frame s, the length appears to be contracted and the contraction 
in length is (Fig. 5.1) 

dx′ = 
dx 

γ 
(5.51)
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Fig. 5.1 Diagrammatic representation of two inertial frames of reference 

For an observer in frame s′ the length of an object remains the same. Furthermore, 
the time interval between the events is dilated and the time dilation is 

dt′ = dτγ (5.52) 

Hence, we may say that a moving clock appears to go slow. 
And relativistic mass is 

M = γ m0 (5.53) 

Since, volume element is not Lorentz invariant because the length changes along 
the direction of motion of an object. Therefore, 

dτ �= dτ ′ (5.54) 

5.11 The Transformation Equations for �E and �B 

It has been observed in various scenarios that the electric field appears to be a magnetic 
field for another observer. We are interested to know how the fields transform. Further, 
we assume that the transformation rules are unaltered irrespective of the fact how the 
fields are produced. Electric fields produced by changing magnetic fields transform 
in the same way as those set up by stationary charges.

(i) Electric Field: Let a frame S/ is moving with velocity vx with respect to the frame 
s. Consider a parallel plate capacitor which is at rest in frame S and carries a 
charge density given by (Fig. 5.2)
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Fig. 5.2 Symbolic representation of an inertial frame S ′ moving with velocity �vx with respect to 
frame S 

σplate = 
q 

A 
(5.55) 

The area of the plates in inertial frame s is given by 

Area = LW (5.56) 

The area of the plates in inertial frame S ′ which is moving with velocity vx along 
x-axis is given by (Fig. 5.3) 

Area′ = A′ = 
L 

γ 
W (5.57) 

The charge density on the plates observed in inertial frame S ′ is given by 

σ ′ = 
q 

A′ = 
γ q 
lw 

= γ σ (5.58)

Fig. 5.3 Visualization of a parallel plate capacitor in an inertial frames of references 
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Accordingly,

�E′ = γ �E (5.59) 

Therefore,

�E′(⊥r) = γ �Es(⊥r) (5.60) 

The above equation pertains to the component of �E that are produced perpendicular 
to the direction of motion of S. Since, no change occurs in parallel component of �E 
as thickness decreases which has nothing to do with area of the plate. Therefore, it 
follows that

�E‖
s′ = �E‖

s (5.61) 

Since, �v = v0x̂. If the plates are lined up in xy-plane. Therefore, it will be the 
separation between the plates that is contracted whereas, L and W are the same. 
Hence, we may write

�E = E1x̂ + E2ŷ (5.62)

�E′ = E1x̂ + γ E2ŷ (5.63) 

(ii) Magnetic Field: Consider a solenoid aligned parallel to x-axis and is at rest in 
inertial frame s. The magnetic field within the coils is (Fig. 5.4)

�B = μ0nI�x (5.64) 

where n is the number of turns per unit length and I is the current through the 
coils.

Due to the contraction of length in inertial frame S′, the number of turns increases. 
Therefore, it follows that

�B′ = μ0n
′I x̂ (5.65) 

where 

n′ =  γ n (5.66) 

Further, the time dilates. Therefore, the current (charge per unit time) in inertial 
frame s is given by
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Fig. 5.4 Graphic representation of a solenoid in the inertial frames of references S and S ′

I ′ = 
I 

γ 
(5.67) 

Substitute Eqs. (5.66) and (5.67) in Eq.  (5.65), we conclude that

�B′ = µ0γ n 
I 

γ 
= �B′ (5.68) 

Let us consider the following alignment of the solenoid. Thus, the magnetic field 
within the solenoid as observed in frame s′ is given by (Fig. 5.5)

�B′ = µ0I
′n′ŷ (5.69) 

where as usual I ′ = I 
γ

However, the circle has changed in to ellipse, therefore, the number of turns per 
unit length is 

n′ = γ 2 n (5.70) 

where r and φ changes as circle moves in �B. One  γ comes from r and other from φ. 
Thus, Eq. (5.69) becomes

�B′ = μ0γ 2 n 
I 

γ 
= μ0nI γ = γ −→B (5.71) 

Thus, from the above discussion it follows that
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Fig. 5.5 Visualization of a solenoid placed parallel to Z-axis

−→
B (⊥) 

S ′ = γ −→B (⊥) 
S (5.72) 

Hence, the entire set of transformation rules is enumerated as follows: 

−→
E (//) S ′ = −→E (//) s , −→

B (//) S ′ = −→B (//) s (5.73) 

−→
E (⊥) 

S ′ = γ E(⊥) 
S , �B(⊥) 

S ′ = γ �B(⊥) 
S 

5.12 Lorentz-Invariant Quantities 

A quantity that does not undergo any change with the change in frame of reference 
is said to be Lorentz-invariant quantity. These quantities are, therefore, independent 
of the frame of reference. Further, it follows from this preposition that the laws of 
physics appear to be same for different observers irrespective of their state of motion. 
The various Lorentz invariant quantities include. 

(1) Charge (q) 
(2) Speed of light c 
(3) (ct)2 − x2 − y2 − z2 (spacetime interval) 
(4) E2 − c2B2 

(5) �E · �B 
(6) ∇2 − 1 

C2 
d2 

dt2 

(7) E2 − P2C2 

(8) Maxwell’s equation.
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Fig. 5.6 Diagrammatic representation of the inertial frames of reference S and S ′

Example 5.5 The electric field E(r) = λ 
2πε0 

xı̂+y ĵ 
x2+y2 due to charged infinite line along 

z-axis in inertial frame s. In a frame moving with a constant velocity w.r.t s along z 
axis, calculate �E (Fig. 5.6) 
Solution: 

We need to find �E′

�Ez = �Ez′

�Ex′ = γ �Ex

�Ey′ = γ �Ey 

(5.74) 

Example 5.6 In an inertial frame of reference, observer ‘A’ measures electric field 
as E = (α, 0, 0) and magnetic field B = (α, 0, 2α) in a region where  α is a constant. 
Another observer ‘B’ moving with constant velocity w.r.t A measures electric and 

magnetic fields respectively as: �E′ =
(�Ex′ , α,  0

)
; �B′ =

(
α, �By′ , α

)
. Determine what 

is the correct option for E′
x and B

′
y from the following (Fig. 5.7).

(a) – 3a 2 and 
5a 
2 . 

(b) α and − 2 α. 
(c) 2 α and – α. 
(d) − 2 α and α. 

Solution: 
−→
E · �B. will be same for both the inertial observers A and B, i.e.,

�E · �B = �E′ · �B′ (5.75) 

and



186 5 Relativistic Electrodynamics

Fig. 5.7 Electric and magnetic field components in the inertial frames of references S and S ′

E2 − B2 = E′ − B′2 (5.76) 

From Eq. (5.75), we can write

�E · �B =α2

�E′ · �B′ =αE′
x + αB′

y 

E′
x + B′

y =α (5.77) 

Further, from Eq. (5.76), we get 

α2 − α2 − 4α2 = E′
x 
2 + α2 − α2 − B′

y 
2 

− 4α2 = E′
x 
2 − B′

y 
2 (5.78) 

Equations (5.77) and (5.78) are only satisfied by option (a), i.e., 

E′
x = −α B′

y = 2α 
A2 = E′

xα + αB′
y −2α2 = α2 − 4α2 = −2α2 

= −α2 + 2α2 = α2 

Example 5.7 In an inertial frame uniform �E and �B are perpendicular to each other 
and satisfy

∣∣∣�E
∣∣∣
2 −

∣∣∣�B
∣∣∣
2 = 29. In another inertial frame which is moving with a 

constant velocity w.r.t. the 1st frame, the magnetic field is 2
√
5k̂ in second frame and 

E consistent with the previous observer is: 

Solution: 

From the transformation laws, we can write
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∣∣∣�E
∣∣∣
2 −

∣∣∣�B
∣∣∣
2 =

∣∣∣�E′
∣∣∣
2 −

∣∣∣�B′
∣∣∣
2 

29 =
∣∣
∣�E′

∣∣
∣
2 − 20

∣
∣∣�E′

∣
∣∣
2 = 29 + 20 = 49

∣∣∣�E′
∣∣∣ = 

7 √
2 

(ı̂ + ĵ ) It will be ⊥ to �B 

5.13 Self-scalar Product 

(i) Velocity: For  3  + 1 dimensions the magnitude or norm is obtained from the self 
or dot product which has the same signature as the metric. The self-product of 
velocity four-vector is therefore, written as 

V μ = (
γ C , γ  V

); Vμ=
(
γ C , −γ V

)

V μ Vμ =
(
γ C , γ  V

)(
γ C , −γ V

) = (γ c)2 − (γ v)2 

= γ 2
(
c2 − v2

)

= γ 2 c2
(
1 − 

v2 

c2

)

=
(

γ 2c2 

γ 2

)
= c2 (5.79) 

Self-scalar product of velocity-four vector is c2(scalar). Further, we can conclude 
that every object moves with a 4 – velocity of magnitude c and the only effect of the 
Lorentz transformations is to change the direction of motion. 

(ii) Four-Momentum with Four-Velocity 

The concepts of four-momentum and four-force are fundamental in describing the 
conservation laws and dynamics of particles in special relativity. They provide a 
consistent way to express energy and momentum in four-dimensional spacetime. 

The four-momentum in terms of four-velocity are given by the following 
expression 

Pμ = m0V 
μ (5.80) 

Pμ = (mc, p) (5.81) 

The four-velocity V μ of a particle is a four-vector that represents the rate of change 
of the particle’s position in spacetime with respect to its proper time, τ. Proper time
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is the time measured in the frame of reference moving with the particle, making 
it an intrinsic property of the particle’s motion. Defined in terms of the particle’s 
spacetime coordinates xμ = {ct, x, y, z} the four-velocity is given by: 

Vμ = (γ c, −γ v) (5.82) 

From Eqs. (5.80) and (5.82), we can write 

Pμ Vμ=m0V 
μ Vμ 

Or, we can write 

Pμ Vμ = m0c
2 

This expression represents the scalar product of four-momentum and four-
velocity. The term γ mc2 corresponds to the total relativistic energy of the particle, 
while γ mv2 captures the kinetic contribution to the energy in the spatial direction. 

Further, from Eqs. (5.81) and (5.82), we can write 

Pμ Vμ = (mc, p)(γ c, −γ v) = γ mc2 − γ mv2 

= γ mc2
(
1 − 

V 2 

c2

)

=
(
c2γ m 
γ 2

)
= m0c

2 (5.83) 

This demonstrates that the invariant rest mass energy m0c2 is a fundamental 
quantity, conserved across all inertial frames. 

(iii) Four-Force and Four-Velocity 

In the framework of special relativity, four-velocity and four-force are critical 
concepts that extend the classical notions of velocity and force to four-dimensional 
spacetime. These four-dimensional vectors (or four-vectors) allow us to analyze 
the dynamics of objects moving at relativistic speeds, where the effects of special 
relativity are significant. 

Four-force Fμ is the four-dimensional generalization of the classical force and 
describes how four-momentum changes with respect to proper time. It is defined as: 

Fμ =
(

γ c 
dm 

dt 
, γ  F

)

And the four-velocity is given by: 

Vμ = (γ c, −γ v)
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Fμ Vμ = 
dPμ 

dt 

where Pμ = m0V μ 

Fμ Vμ = 
dV μm0 

dt 

VμF
μ = 

dV 2m0 

dt2 

Since the four-velocity and four-force are orthogonal, we have: 

Fμ Vμ = 0 (5.84) 

This property reflects that in the particle’s instantaneous rest frame, where V μ = 
(c, 0, 0, 0), the force acts only in spatial directions without affecting the temporal 
component of four-velocity. 

Further, we can write 

Fμ Vμ =
(

γ c 
dm 

dt 
, γ  F

)
(γ c, −γ v) 

0 =
(

γ 2 c2 
dm 

dt 
− γ 2 Fv

)

c2 
dm 

dt 
− Fv = 0 

c2 
dm 

dt 
= Fv 

c2 dm = Fvdt 

At t = 0, m  = m0. Integrating above equation, we get 

m∫

m0 

c2 dm = 
t∫

0 

Fvdt 

t∫

0 

Fvdt = c2 (m − m0) (5.85) 

Let us evaluate the integral on the L.H.S, we get
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t∫

0 

m 
dv 

dt 
· vdt = 

t∫

0 

m

(
dv2 

2dt

)
dt 

t∫

0 

dmv2 

dt2 
dt = 

1 

2 
mv2 

(5.86) 

This equation indicates that the classical kinetic energy 1 2 m · v2 is the difference 
between the total relativistic energy and the rest energy. It represents the extra energy 
the particle gains due to its motion. 

From Eqs. (5.85) and (5.86), we get 

1 

2 
mv2 = c2 (m − m0) 

K · E = c2 (m − m0) 

This expression shows that the kinetic energy depends on the difference between 
the relativistic mass m and the rest mass m0 scaled by the square of the speed of light 
c2. 

Mc2 = K · E + m0c
2 

This relationship unites the rest energy m0c2 with the kinetic energy to yield the 
total energy of the particle in its moving frame. 

E = T + m0c
2 (5.87) 

where T represents the relativistic kinetic energy of the particle. This equation rein-
forces that E, the total energy, combines both the particle’s inherent rest energy and 
the additional energy it gains through motion. 

5.14 Combined Electric and Magnetic Field 
Transformations 

The transformation of electric and magnetic fields can be obtained while utilizing the 
Lorentz force law as the definition of �E and −→B. Let us consider two inertial frames S 
and S

′
as shown in below (Fig. 5.8), where S

′
moves with a constant velocity relative 

to S along the x-axis. The electric and magnetic fields in the original frames S are 
given by:

�E = Ex x̂ + Ey ŷ + Ezẑ



5.14 Combined Electric and Magnetic Field Transformations 191

Fig. 5.8 Graphical representation of transformed vectors �E and �B in two inertial frames of reference 
S and S

′

�B = Bx x̂ + By ŷ + Bzẑ 

(i) Electric Field: Let the electron is at rest with respect to the frame s and we 
assume it moves with velocity v along x′-axis relative to frame. s′. From the  
transformation equations of force, it follows that

�Ex = �Ex′

�Ey′ = γ
(�Ey − v�Bz

)

�E′
y = γ

(�Ey

) (
if v�Bz = 0

)
(Anticlockwise positive sign)

�E′
z = γ

(�Ez + v�By
)

(ii) Magnetic Field: It is pertinent to mention here that the electron is at rest in frame 
s, therefore, the magnetic field does not produce a force. We can, therefore, write 
the transformation law for the magnetic field as follows

�B′
x = �Bx

�B′
y = γ

(�By − 
v 

C2
�Ez

)

�B′
Z = γ

(�BZ − 
v 

C2
�Ey

)

Motion along y direction

�B′
y = �By
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�Bz = γ
(�BZ − 

v 

C2
�Ex

)

�B′
x = γ

(�Bx − 
v 

C2
�Ez

)

These equations describe how the electric and magnetic fields transform between 
two inertial frames moving relative to each other with velocity v. 

Example 5.8 Using the Lorentz transformation matrix, show that for a particle 
moving along the x-axis, the transformation preserves the 4-vector form. Use the 
matrix form to find the transformed time and spatial coordinates

(
ct′, x′) of an event 

in S ′ given ct = 4sc, x = 3m, v = 0.6c and verify using the Lorentz transformation. 

Solution: 

For motion along x-axis the Lorentz transformation matrix is 

λ = 

⎛ 

⎜⎜ 
⎝ 

γ −γ v c 0 0  
−γ v c γ 0 0  
0 0 1  0  
0 0 0  1  

⎞ 

⎟⎟ 
⎠ 

where γ = 1 √
1− v2 

c2 

= 1 √
1−(0.6)2 

= 1.25 

X = 

⎛ 

⎜ 
⎜ 
⎝ 

ct 
x 
y 
z 

⎞ 

⎟ 
⎟ 
⎠ = 

⎛ 

⎜ 
⎜ 
⎝ 

4cs 
3m 
0 
0 

⎞ 

⎟ 
⎟ 
⎠ 

Use the transformation X ′ = λX = 

⎛ 

⎜⎜ 
⎝ 

γ −γ v c 0 0  
−γ v c γ 0 0  
0 0 1  0  
0 0 0  1  

⎞ 

⎟⎟ 
⎠ 

⎛ 

⎜⎜ 
⎝ 

4cs 
3m 
0 
0 

⎞ 

⎟⎟ 
⎠ 

ct′ = γ (4cs) − γ 
v 

c 
(3m) = 2.75cs 

x′ = −γ 
v 

c 
(4c) + γ (3m) = 0 

The transformed coordinates are ct′ = 2.75cs and x′ = 0, which verify that the 
Lorentz transformation preserves the 4-vector form. 

Example 5.9 An electric field E = 500N /C is perpendicular to the direction of 
motion in a parallel plate capacitor, if an observer in frame S sees this electric field,
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calculate the electric field E′ observed in a frame S′ moving with speed v = 0.6c 
relative to S along the x-axis. 

Solution: 

Since the electric field is perpendicular to the direction of motion along the y-axis, 
the component transformation rule for the perpendicular electric field is 

E′
⊥ = γ E 

γ = 1 
√
1 − v2 c2 

= 1 
√
1 − (0.64)2 

= 
5 

4 

E′ = γ E = 
5 

4 
(500N /C) = 625N /C 

The electric field observed in the frame S ′ is 

E′ = 625N /C 

Example 5.10 In an inertial frame S, an observer measures an electric field E = 
6N /C and a magnetic field B = 2 × 10−8 T in a specific region of space. The frame 
S ′ moves with a velocity v = 0.6 c along the x-axis relative to S. Calculate the value 
of the Lorentz invariant quantity E2 − c2B2 in both frames and verify that it remains 
unchanged. 

Solution: 

In frame S 

E2 − c2 B2 = (6N /C)2 − (
3 × 108 m/s

)2 × (
2 × 10−8 T

)2 

Simplifying 

E2 − c2 B2 = 0 

The Lorentz-invariant quantity E2 − c2B2 remains zero in both frames demon-
strating its invariance under Lorentz transformation. 

Unsolved Problems: 

Problem 5.1 Given the electromagnetic tensor Fμυ in frame S. 

Fμυ = 

⎛ 

⎜ 
⎜ 
⎝ 

0 −Ex/c −Ey/c −Ez/c 
Ex/c 0 −Bz By 

Ey/c Bz 0 −Bx 

Ez/c −By Bx 0 

⎞ 

⎟ 
⎟ 
⎠
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Show that the quantity FμυFμν is Lorentz invariant. 

Problem 5.2 Consider two particles with 4-momenta Pμ 
1 = (E1 

c , px1, py1, pz1
)
and 

P2μ =
(E2 

c , px2, py2, pz2
)
. Show that the quantity Pμ 

1 P2μ is invariant under Lorentz 
transformation. 

Problem 5.3 Suppose J μ = (
ρc, Jx, Jy, Jz

)
represents a 4-current density vector, 

where ρ is the charge density and J is the spatial current density. Show that the 
divergence of J μ, defined as ∂μJ μ = 0 leads to the continuity equation ∂ρ 

∂t + �∇·�J = 0. 

Problem 5.4 For a particle of mass m and momentum p, the relativistic energy is 

given by E = 
√

(pc)2 + (
mc2

)2 
. Verify that this expression satisfies the relation 

E2 − (pc)2 = (
mc2

)2 
. 

Problem 5.5 Consider a source emitting light with 4-momentum Pμ =(
E 
c , px, py, pz

)
in frame S. If an observer in frame S ′ moves with velocity v along the 

x-axis relative to S. Show that the observed frequency v′ of the light in S ′ is given by 

v′ =  v 

√
1 − β 
1 + β 

Problem 5.6 Let U μ = γ
(
c, vx, vy, vz

)
represents the velocity 4-vector of a particle 

moving with speed v in the x-direction. Show that the time component of U μ 

corresponds to the time dilation factor. 

Problem 5.7 Consider an electric field E along the y-axis and a magnetic field B 
along the z-axis in a frame S. Find the transformed electric field E′

y and the magnetic 
field B′

z in frame S ′, which moves along the x-axis with velocity v. 

Ans. E′
y = E−vB √

1− v2 

c2 

, B′
z = B− v 

c2 
E 

√
1− v2 

c2 

. 

Problem 5.8 Show that the 4-acceleration Aμ = dU μ 

dτ of a particle is orthogonal to 
its 4-velocity U μ, where U μ is the 4-velocity and τ is the proper time. 

5.15 Summary 

• Introduction to Tensors: Tensors generalize vectors and are essential for 
describing physical phenomena in non-relativistic and relativistic physics. They 
provide a mathematical framework for understanding physical laws under various 
transformations. 

• Lorentz-Invariant Quantities: Quantities like (ct)2 − r2, energy–momentum 
relations and Maxwell’s equations remain unchanged under Lorentz transforma-
tions, ensuring consistency across inertial frames.
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• Four-Dimensional Dot Product: The scalar product in 4D spacetime uses the 
metric tensor gμν , extending classical vector operations to relativistic contexts. 

• Energy–Momentum Relation: Describes the link between energy, momentum 
and mass through E2 = p2c2+m2c4 fundamental for relativistic particle dynamics. 

• Continuity Equation: Charge conservation is expressed as ∂μJ μ = 0, repre-
senting the divergence-free nature of current density in 4D spacetime. 

• Lorentz Gauge: Compactly represented as ∂μAμ, the Lorentz gauge ensures 
potentials satisfy the inhomogeneous wave equation with source terms. 

• Lorentz Transformation: Relates spacetime coordinates between inertial frames 
via transformation matrices, interpreted geometrically as 4D rotations. 

• Four-Velocity and Four-Acceleration: Four-velocity U μ = γ (c, �v) main-
tains an invariant magnitude c2 under Lorentz transformations. Four-acceleration 
incorporates relativistic corrections, bridging classical and relativistic mechanics. 

• Four-Momentum and Four-Force: Four-momentum Pμ = γ U μ encapsulates 
energy and momentum in 4D spacetime. Four-force Fμ = dPμ 

dτ governs relativistic 
dynamics. 

• Electric and Magnetic Field Transformations: Electric and magnetic fields 
transform consistently across frames, e.g., �E′

⊥ = γ �E⊥, maintaining physical laws. 
• Lorentz Contraction and Time Dilation: Relativistic effects include contracted 

lengths and dilated time intervals, critical for high-speed phenomena. 
• Self-scalar Products: Invariant magnitudes for velocity, momentum and force 

four-vectors demonstrate the consistency of relativistic formulations. 
• Applications of Lorentz Invariance: Spacetime intervals (S)2 , dot products and 

fields
(
E2 − c2B2

)
remain invariant under Lorentz transformations. Transforma-

tion rules are applied to scenarios like moving capacitors and solenoids. 
• Electric and Magnetic Field Relationships: Field transformations illustrate how 

electric fields transform into magnetic fields under motion, adapting to relativistic 
velocities. 

• Relativistic Kinetic Energy: The relationship KE = c2(m − m0) integrates rela-
tivistic mass changes and rest energy, uniting classical and relativistic energy 
concepts. 

• Four-Force and Four-Velocity: The orthogonality of four-force and four-velocity 
ensures energy conservation and captures interactions in spacetime dynamics. 

• Transformation of Combined Fields: Electric and magnetic fields transform 
consistently, preserving Lorentz invariance and adhering to Maxwell’s equations. 

This chapter bridges classical mechanics and special relativity, providing math-
ematical tools and physical insights for analyzing relativistic electrodynamic 
systems.
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1. Fundamental Constants 

Constant Symbol Value Units Description 

Speed of light c 2.998 × 108 m/s Speed of light in vacuum 

Elementary charge e 1.602 × 10−19 C Charge of single electron 

Permittivity of free space ε0 8.85 × 10−12 F/m Electric force in vacuum 

Permeability of free space μ0 4π × 10−7 N/A2 Magnetic force in vacuum 

Electron mass me 9.109 × 10−31 kg Mass of electron 

Coulomb’s constant ke 8.987 × 109 N-m2/C2 Electric force constant in 
vacuum 

2. Mathematical Formulae 

Formula Expression Description 

Gradient �∇f =
(

∂f 
∂x

)
x̂ +

(
∂f 
∂y

)
ŷ +

(
∂f 
∂z

)
ẑ Measures the rate and direction of 

change in a scalar field 

Divergence �∇.�A =
(

∂Ax 
∂x

)
+

(
∂Ay 
∂y

)
+

(
∂Az 
∂z

)
Measures the net flow out of a point 
in a vector field 

Curl �∇ × �A = x̂
(

∂Vz 
∂y − ∂Vy 

∂z

)

−ŷ
(

∂Vz 
∂x − ∂Vx 

∂z

)

+ẑ
(

∂Vy 
∂x − ∂Vx 

∂y

)

Describes rotation in a vector field, 
generating the field’s circulation 

Laplacian ∇2f = ∂2f 
∂x2 

+ ∂
2f 

∂y2 
+ ∂

2f 
∂z2

Describes second derivative 
measures for fields

(continued)
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(continued)

Formula Expression Description

Divergence theorem
∫
V

�∇ · �AdV = ∮
S

�A · d�s Relates the flow across a surface to 
the divergence within a volume 

Stokes’ theorem
∫
S

( �∇ × �A
)

· d�s = ∮
C

�A · d�l Relates the circulation around a loop 
to the curl over a surface 

Fourier transform F[
f (x)

] = ∫ ∞ 
−∞ f (x)e

−i2π kxdx Converts functions from spatial to 
frequency domain 

Gaussian integral
∫ ∞ 
−∞ e

−∝x2 dx = 
√

π 
α 

Evaluates integrals of the 
exponential functions common in 
physics 

3. Basic Equations in Electrodynamics 

Equation name Expression Description 

Coulomb’s law �E = 1 
4πε0 

r̂ 
r2

Describes electric field from a point 
charge 

Gauss’s law (electrostatics) �∇ · �E = ρ 
ε0 

Relates electric field divergence to 
charge density 

Faraday’s law �∇ × �E = − ∂ �B 
∂t Describes how a time-varying 

magnetic field induces an electric 
field 

Ampere’s law �∇ × �B = μ0�J + μ0ε0 
∂ �E 
∂t Describes how current and a 

time-varying electric field induce a 
magnetic field 

Gauss’s law (magnetostatics) �∇ · �B = 0 Indicates that no magnetic 
monopoles exist 

Lorentz force law �F = q
(�E + �v × �B

)
Describes force on a moving charge 
in electric and magnetic field 

Poisson’s equation ∇2φ = −  ρ 
ε0 

Relates electric field to charge 
density 

Wave equation ∇2 �E − 1 
c2 

∂2 �E 
∂t2 

= 0 Describes propagation of 
electromagnetic waves 

Continuity equation �∇ · �J + ∂ρ 
∂t = 0 Represents conservation of charge 

Maxwell’s equations �∇ · �E = ρ 
ε0

�∇ · �B = 0
�∇ × �E = − ∂ �B 

∂t

�∇ × �B = μ0�J + μ0ε0 
∂ �E 
∂t 

Set of four fundamental equations 
in classical electrodynamics
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4. Double Factorial: The double factorial of an integer n, denoted by n!! is the 
product of all the integers from n down to 1 that have the same parity (even or 
odd) as n. 

(i) Double Factorial (odd n) 

(2n − 1)!! = (2n − 1) · (2n − 3) . . .  3.1 

(ii) Double Factorial (even n) 

(2n)!! = (2n) · (2n − 3) . . .  4.2 

(iii) Recursive Formula 

(n)!! = n · (n − 2)!! 

(iv) n! =  (n)!! · (n − 1)!! for positive integer n 
(v) Gamma Functions Relations (for even/odd cases) 

For odd integers n = 2m + 1 

(2m + 1)!! = 
(2m + 1)! 
2m · m! 

For even integers n = 2m 

(2m)!! = 
(2m)! 
2m · m! 

5. Fourier Series: The Fourier series decomposes a periodic function f (x) into a 
sum of sines and cosines representing the function as an infinite series. 

The general form with period 2π 

f (x) = a0 + 
∞∑
n=1 

(an cos(nx) + bn sin(nx)) 

where a0 = 1 
2π

∫ π 
−π f (x)dx, an = 1 

π

∫ π 
−π f (x) cos(nx)dx 

bn = 
1 

π 

π∫

−π 

f (x) sin(nx)dx
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6. Fourier Series for Even and Odd Functions 
(i) If f (x) is even, all bn = 0 and only cosine terms remain 

f (x) = a0 + 
∞∑
n=1 

an cos(nx) 

(ii) If f (x) is odd, all an = 0 and only sine terms remain 

f (x) = 
∞∑
n=1 

bn sin(nx) 

7. Vector Calculus Operators in Cylindrical and Spherical Coordinates 

Operator Cylindrical Coordinates (r, φ,  z) Spherical Coordinates (r, θ, φ)  

Gradient �∇f ∂f 
∂r r̂ + 1 r 

∂f 
∂φ φ̂ + ∂f 

∂z ẑ
∂f 
∂r r̂ + 1 r 

∂f 
∂θ θ̂ + 1 

r sin(θ ) 
∂f 
∂φ φ̂ 

Divergence �∇ · �A 1 
r 

∂(rAr ) 
∂r + 1 r 

∂(Aφ ) 
∂φ + ∂Az 

∂z 
1 
r2 

∂(r2Ar ) 
∂r + 1 

r sin(θ ) 
∂(sin θ Aθ ) 

∂θ + 
1 

r sin(θ ) 
∂Aφ 
∂φ 

Curl �∇ × �A (
1 
r 

∂Az 
∂φ − ∂Aφ 

∂z

)
r̂ +

(
∂Ar 
∂z − ∂Az 

∂r

)
φ̂ +(

1 
r 

∂(rAφ ) 
∂r − 1 r 

∂Ar 
∂φ

)
ẑ 

1 
r2 sin(θ )

∣∣∣∣∣∣∣∣

r̂ r  θ̂ r sin θ φ̂ 
∂ 
∂r 

∂ 
∂θ 

∂ 
∂φ 

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
Laplacian ∇2f 1 

r 
∂ 
∂r

(
r ∂f 

∂r

)
+ 1 

r2 
∂2f 
∂φ2 + ∂

2f 
∂z2 

1 
r2 

∂ 
∂r

(
r2 ∂f 

∂r

)
+ 1 

r2 sin θ 
∂ 
∂θ

(
sin θ ∂f 

∂θ

)
+ 

1 
r2 sin2 θ 

∂2f 
∂φ2
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